Research Article
BibTex RIS Cite

A recurrent set for one-dimensional dynamical systems

Year 2018, Volume: 47 Issue: 1, 1 - 7, 01.02.2018

Abstract

In this note we introduce a new kind of recurrent set for a dynamical system on the interval [0,1]. This set is not necessarily invariant under continuous conjugacies, but it is invariant under absolutely continuous ones.

References

  • S. A. Ahmadi. On the topology of the chain recurrent set of a dynamical system. Applied general topology, 15(2):167–174, 2014.
  • J. M. Alongi and G. S. Nelson. Recurrence and topology, volume 85. American Mathematical Soc., 2007.
  • N. Aoki and K. Hiraide. Topological theory of dynamical systems: recent advances, volume 52. Elsevier, 1994.
  • P. Krupski, K. Omiljanowski, and K. Ungeheuer. Chain recurrent sets of generic mappings on compact spaces. Topology and its Applications, 202:251 – 268, 2016.
  • S. Li. Dynamical properties of the shift maps on the inverse limit spaces. Ergodic Theory and Dynamical Systems, 12(01):95–108, 1992.
  • N. Shekutkovski and M. Shoptrajanov. Intrinsic shape of the chain recurrent set. Topology and its Applications, 202:117 – 126, 2016.
  • T. Shimomura. Special homeomorphisms and approximation for cantor systems. Topology and its Applications, 161:178 – 195, 2014.
  • S. Spataru. An absolutely continuous function whose inverse functionis not absolutely continuous. Note di Matematica, 23(1):47–49, 2004.
  • X. Wen and L. Wen. Codimension one structurally stable chain classes. Transactions of the American Mathematical Society, 368(6):3849–3870, 2016.
Year 2018, Volume: 47 Issue: 1, 1 - 7, 01.02.2018

Abstract

References

  • S. A. Ahmadi. On the topology of the chain recurrent set of a dynamical system. Applied general topology, 15(2):167–174, 2014.
  • J. M. Alongi and G. S. Nelson. Recurrence and topology, volume 85. American Mathematical Soc., 2007.
  • N. Aoki and K. Hiraide. Topological theory of dynamical systems: recent advances, volume 52. Elsevier, 1994.
  • P. Krupski, K. Omiljanowski, and K. Ungeheuer. Chain recurrent sets of generic mappings on compact spaces. Topology and its Applications, 202:251 – 268, 2016.
  • S. Li. Dynamical properties of the shift maps on the inverse limit spaces. Ergodic Theory and Dynamical Systems, 12(01):95–108, 1992.
  • N. Shekutkovski and M. Shoptrajanov. Intrinsic shape of the chain recurrent set. Topology and its Applications, 202:117 – 126, 2016.
  • T. Shimomura. Special homeomorphisms and approximation for cantor systems. Topology and its Applications, 161:178 – 195, 2014.
  • S. Spataru. An absolutely continuous function whose inverse functionis not absolutely continuous. Note di Matematica, 23(1):47–49, 2004.
  • X. Wen and L. Wen. Codimension one structurally stable chain classes. Transactions of the American Mathematical Society, 368(6):3849–3870, 2016.
There are 9 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Seyyed Alireza Ahmadi This is me

Publication Date February 1, 2018
Published in Issue Year 2018 Volume: 47 Issue: 1

Cite

APA Ahmadi, S. A. (2018). A recurrent set for one-dimensional dynamical systems. Hacettepe Journal of Mathematics and Statistics, 47(1), 1-7.
AMA Ahmadi SA. A recurrent set for one-dimensional dynamical systems. Hacettepe Journal of Mathematics and Statistics. February 2018;47(1):1-7.
Chicago Ahmadi, Seyyed Alireza. “A Recurrent Set for One-Dimensional Dynamical Systems”. Hacettepe Journal of Mathematics and Statistics 47, no. 1 (February 2018): 1-7.
EndNote Ahmadi SA (February 1, 2018) A recurrent set for one-dimensional dynamical systems. Hacettepe Journal of Mathematics and Statistics 47 1 1–7.
IEEE S. A. Ahmadi, “A recurrent set for one-dimensional dynamical systems”, Hacettepe Journal of Mathematics and Statistics, vol. 47, no. 1, pp. 1–7, 2018.
ISNAD Ahmadi, Seyyed Alireza. “A Recurrent Set for One-Dimensional Dynamical Systems”. Hacettepe Journal of Mathematics and Statistics 47/1 (February 2018), 1-7.
JAMA Ahmadi SA. A recurrent set for one-dimensional dynamical systems. Hacettepe Journal of Mathematics and Statistics. 2018;47:1–7.
MLA Ahmadi, Seyyed Alireza. “A Recurrent Set for One-Dimensional Dynamical Systems”. Hacettepe Journal of Mathematics and Statistics, vol. 47, no. 1, 2018, pp. 1-7.
Vancouver Ahmadi SA. A recurrent set for one-dimensional dynamical systems. Hacettepe Journal of Mathematics and Statistics. 2018;47(1):1-7.