Research Article
BibTex RIS Cite
Year 2017, Volume: 46 Issue: 4, 593 - 601, 01.08.2017

Abstract

References

  • Brozos-Vázquez, M., García-Rio, E., Gilkey, P., Nikevi¢, S. and Vázquez-Lorenzo, R. The Geometry of Walker Manifolds, Synthesis Lectures on Mathematics and Statistics 5 (Morgan and Claypool Publishers, 2009).
  • Calvino-Louzao, E, García-Rio, E., Gilkey, P. and Vázquez-Lorenzo, R. The geometry of modied Riemannian extensions, Proc. R. Soc. A. 465, 2023-2040, 2009.
  • Calvino-Louzao, E., García-Rio, E. and Vázquez-Lorenzo, R. Riemann extensions of torsion-free connections with degenerate Ricci tensor, Canad. J. Math. 62 (5), 1037-1057, 2010.
  • Diallo, A. S. and Massamba, F. Ane Szabó connections on smooth manifolds, Rev. Un. Mat. Argentina 58 (1), 37-52, 2017.
  • Fiedler, B. and Gilkey, P. Nilpotent Szabo, Osserman and Ivanov-Petrova pseudo- Riemannian manifolds, Contemp. Math. 337, 53-64, 2003.
  • García-Río, E., Gilkey, P., Nikcevi¢, S. and Vázquez-Lorenzo, R. Applications of Ane and Weyl Geometry, Synthesis Lectures on Mathematics and Statistics 13 (Morgan and Claypool Publishers, 2013).
  • García-Rio, E., Kupeli, D. N., Vázquez-Abal, M. E. and Vázquez-Lorenzo, R. Ane Osserman connections and their Riemannian extensions, Dierential Geom. Appl. 11, 145-153, 1999.
  • Gilkey, P. B., Ivanova, R. and Zhang, T. Szabó Osserman IP Pseudo-Riemannian manifolds, Publ. Math. Debrecen 62, 387-401, 2003.
  • Gilkey, P. and Stavrov, I. Curvature tensors whose Jacobi or Szabó operator is nilpotent on null vectors, Bull. London Math. Soc. 34 (6), 650-658, 2002.
  • Kowalski, O. and Sekizawa, M. The Riemann extensions with cyclic parallel Ricci tensor, Math. Nachr. 287 (8-9), 955-961, 2014.
  • Patterson, E. M. and Walker, A. G. Riemann extensions, Quart. J. Math. Oxford Ser. 3, 19-28, 1952.
  • Szabó, Z. I. A short topological proof for the symmetry of 2 point homogeneous spaces, Invent. Math. 106, 61-64, 1991.
  • Yano, K. and Ishihara, S. Tangent and cotangent bundles: dierential geometry, Pure and Applied Mathematics 16 ( Marcel Dekker, New York, 1973).

On twisted Riemannian extensions associated with Szabó metrics

Year 2017, Volume: 46 Issue: 4, 593 - 601, 01.08.2017

Abstract

Let $M$ be an n-dimensional manifold with a torsion free afine connection $\nabla$ and let $T^*M$ be the cotangent bundle. In this paper, we consider some of the geometric aspects of a twisted Riemannian extension which provide a link between the afine geometry of $(M,\nabla)$ and the neutral signature pseudo-Riemannian geometry of $T^*M$. We investigate the spectral geometry of the Szabó operator on $M$ and on $T^*M$.

References

  • Brozos-Vázquez, M., García-Rio, E., Gilkey, P., Nikevi¢, S. and Vázquez-Lorenzo, R. The Geometry of Walker Manifolds, Synthesis Lectures on Mathematics and Statistics 5 (Morgan and Claypool Publishers, 2009).
  • Calvino-Louzao, E, García-Rio, E., Gilkey, P. and Vázquez-Lorenzo, R. The geometry of modied Riemannian extensions, Proc. R. Soc. A. 465, 2023-2040, 2009.
  • Calvino-Louzao, E., García-Rio, E. and Vázquez-Lorenzo, R. Riemann extensions of torsion-free connections with degenerate Ricci tensor, Canad. J. Math. 62 (5), 1037-1057, 2010.
  • Diallo, A. S. and Massamba, F. Ane Szabó connections on smooth manifolds, Rev. Un. Mat. Argentina 58 (1), 37-52, 2017.
  • Fiedler, B. and Gilkey, P. Nilpotent Szabo, Osserman and Ivanov-Petrova pseudo- Riemannian manifolds, Contemp. Math. 337, 53-64, 2003.
  • García-Río, E., Gilkey, P., Nikcevi¢, S. and Vázquez-Lorenzo, R. Applications of Ane and Weyl Geometry, Synthesis Lectures on Mathematics and Statistics 13 (Morgan and Claypool Publishers, 2013).
  • García-Rio, E., Kupeli, D. N., Vázquez-Abal, M. E. and Vázquez-Lorenzo, R. Ane Osserman connections and their Riemannian extensions, Dierential Geom. Appl. 11, 145-153, 1999.
  • Gilkey, P. B., Ivanova, R. and Zhang, T. Szabó Osserman IP Pseudo-Riemannian manifolds, Publ. Math. Debrecen 62, 387-401, 2003.
  • Gilkey, P. and Stavrov, I. Curvature tensors whose Jacobi or Szabó operator is nilpotent on null vectors, Bull. London Math. Soc. 34 (6), 650-658, 2002.
  • Kowalski, O. and Sekizawa, M. The Riemann extensions with cyclic parallel Ricci tensor, Math. Nachr. 287 (8-9), 955-961, 2014.
  • Patterson, E. M. and Walker, A. G. Riemann extensions, Quart. J. Math. Oxford Ser. 3, 19-28, 1952.
  • Szabó, Z. I. A short topological proof for the symmetry of 2 point homogeneous spaces, Invent. Math. 106, 61-64, 1991.
  • Yano, K. and Ishihara, S. Tangent and cotangent bundles: dierential geometry, Pure and Applied Mathematics 16 ( Marcel Dekker, New York, 1973).
There are 13 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Abdoul Salam Diallo This is me

Silas Longwap

Fortuné Massamba This is me

Publication Date August 1, 2017
Published in Issue Year 2017 Volume: 46 Issue: 4

Cite

APA Diallo, A. S., Longwap, S., & Massamba, F. (2017). On twisted Riemannian extensions associated with Szabó metrics. Hacettepe Journal of Mathematics and Statistics, 46(4), 593-601.
AMA Diallo AS, Longwap S, Massamba F. On twisted Riemannian extensions associated with Szabó metrics. Hacettepe Journal of Mathematics and Statistics. August 2017;46(4):593-601.
Chicago Diallo, Abdoul Salam, Silas Longwap, and Fortuné Massamba. “On Twisted Riemannian Extensions Associated With Szabó Metrics”. Hacettepe Journal of Mathematics and Statistics 46, no. 4 (August 2017): 593-601.
EndNote Diallo AS, Longwap S, Massamba F (August 1, 2017) On twisted Riemannian extensions associated with Szabó metrics. Hacettepe Journal of Mathematics and Statistics 46 4 593–601.
IEEE A. S. Diallo, S. Longwap, and F. Massamba, “On twisted Riemannian extensions associated with Szabó metrics”, Hacettepe Journal of Mathematics and Statistics, vol. 46, no. 4, pp. 593–601, 2017.
ISNAD Diallo, Abdoul Salam et al. “On Twisted Riemannian Extensions Associated With Szabó Metrics”. Hacettepe Journal of Mathematics and Statistics 46/4 (August 2017), 593-601.
JAMA Diallo AS, Longwap S, Massamba F. On twisted Riemannian extensions associated with Szabó metrics. Hacettepe Journal of Mathematics and Statistics. 2017;46:593–601.
MLA Diallo, Abdoul Salam et al. “On Twisted Riemannian Extensions Associated With Szabó Metrics”. Hacettepe Journal of Mathematics and Statistics, vol. 46, no. 4, 2017, pp. 593-01.
Vancouver Diallo AS, Longwap S, Massamba F. On twisted Riemannian extensions associated with Szabó metrics. Hacettepe Journal of Mathematics and Statistics. 2017;46(4):593-601.