Year 2017,
Volume: 46 Issue: 4, 593 - 601, 01.08.2017
Abdoul Salam Diallo
Silas Longwap
,
Fortuné Massamba
References
- Brozos-Vázquez, M., García-Rio, E., Gilkey, P., Nikevi¢, S. and Vázquez-Lorenzo, R. The
Geometry of Walker Manifolds, Synthesis Lectures on Mathematics and Statistics 5 (Morgan
and Claypool Publishers, 2009).
- Calvino-Louzao, E, García-Rio, E., Gilkey, P. and Vázquez-Lorenzo, R. The geometry of
modied Riemannian extensions, Proc. R. Soc. A. 465, 2023-2040, 2009.
- Calvino-Louzao, E., García-Rio, E. and Vázquez-Lorenzo, R. Riemann extensions of
torsion-free connections with degenerate Ricci tensor, Canad. J. Math. 62 (5), 1037-1057,
2010.
- Diallo, A. S. and Massamba, F. Ane Szabó connections on smooth manifolds, Rev. Un.
Mat. Argentina 58 (1), 37-52, 2017.
- Fiedler, B. and Gilkey, P. Nilpotent Szabo, Osserman and Ivanov-Petrova pseudo-
Riemannian manifolds, Contemp. Math. 337, 53-64, 2003.
- García-Río, E., Gilkey, P., Nikcevi¢, S. and Vázquez-Lorenzo, R. Applications of Ane
and Weyl Geometry, Synthesis Lectures on Mathematics and Statistics 13 (Morgan and
Claypool Publishers, 2013).
- García-Rio, E., Kupeli, D. N., Vázquez-Abal, M. E. and Vázquez-Lorenzo, R. Ane Osserman
connections and their Riemannian extensions, Dierential Geom. Appl. 11, 145-153,
1999.
- Gilkey, P. B., Ivanova, R. and Zhang, T. Szabó Osserman IP Pseudo-Riemannian manifolds,
Publ. Math. Debrecen 62, 387-401, 2003.
- Gilkey, P. and Stavrov, I. Curvature tensors whose Jacobi or Szabó operator is nilpotent on
null vectors, Bull. London Math. Soc. 34 (6), 650-658, 2002.
- Kowalski, O. and Sekizawa, M. The Riemann extensions with cyclic parallel Ricci tensor,
Math. Nachr. 287 (8-9), 955-961, 2014.
- Patterson, E. M. and Walker, A. G. Riemann extensions, Quart. J. Math. Oxford Ser. 3,
19-28, 1952.
- Szabó, Z. I. A short topological proof for the symmetry of 2 point homogeneous spaces,
Invent. Math. 106, 61-64, 1991.
- Yano, K. and Ishihara, S. Tangent and cotangent bundles: dierential geometry, Pure and
Applied Mathematics 16 ( Marcel Dekker, New York, 1973).
On twisted Riemannian extensions associated with Szabó metrics
Year 2017,
Volume: 46 Issue: 4, 593 - 601, 01.08.2017
Abdoul Salam Diallo
Silas Longwap
,
Fortuné Massamba
Abstract
Let $M$ be an n-dimensional manifold with a torsion free afine connection $\nabla$ and let $T^*M$ be the cotangent bundle. In this paper, we consider some of the geometric aspects of a twisted Riemannian extension which provide a link between the afine geometry of $(M,\nabla)$ and the neutral signature pseudo-Riemannian geometry of $T^*M$. We investigate the spectral geometry of the Szabó operator on $M$ and on $T^*M$.
References
- Brozos-Vázquez, M., García-Rio, E., Gilkey, P., Nikevi¢, S. and Vázquez-Lorenzo, R. The
Geometry of Walker Manifolds, Synthesis Lectures on Mathematics and Statistics 5 (Morgan
and Claypool Publishers, 2009).
- Calvino-Louzao, E, García-Rio, E., Gilkey, P. and Vázquez-Lorenzo, R. The geometry of
modied Riemannian extensions, Proc. R. Soc. A. 465, 2023-2040, 2009.
- Calvino-Louzao, E., García-Rio, E. and Vázquez-Lorenzo, R. Riemann extensions of
torsion-free connections with degenerate Ricci tensor, Canad. J. Math. 62 (5), 1037-1057,
2010.
- Diallo, A. S. and Massamba, F. Ane Szabó connections on smooth manifolds, Rev. Un.
Mat. Argentina 58 (1), 37-52, 2017.
- Fiedler, B. and Gilkey, P. Nilpotent Szabo, Osserman and Ivanov-Petrova pseudo-
Riemannian manifolds, Contemp. Math. 337, 53-64, 2003.
- García-Río, E., Gilkey, P., Nikcevi¢, S. and Vázquez-Lorenzo, R. Applications of Ane
and Weyl Geometry, Synthesis Lectures on Mathematics and Statistics 13 (Morgan and
Claypool Publishers, 2013).
- García-Rio, E., Kupeli, D. N., Vázquez-Abal, M. E. and Vázquez-Lorenzo, R. Ane Osserman
connections and their Riemannian extensions, Dierential Geom. Appl. 11, 145-153,
1999.
- Gilkey, P. B., Ivanova, R. and Zhang, T. Szabó Osserman IP Pseudo-Riemannian manifolds,
Publ. Math. Debrecen 62, 387-401, 2003.
- Gilkey, P. and Stavrov, I. Curvature tensors whose Jacobi or Szabó operator is nilpotent on
null vectors, Bull. London Math. Soc. 34 (6), 650-658, 2002.
- Kowalski, O. and Sekizawa, M. The Riemann extensions with cyclic parallel Ricci tensor,
Math. Nachr. 287 (8-9), 955-961, 2014.
- Patterson, E. M. and Walker, A. G. Riemann extensions, Quart. J. Math. Oxford Ser. 3,
19-28, 1952.
- Szabó, Z. I. A short topological proof for the symmetry of 2 point homogeneous spaces,
Invent. Math. 106, 61-64, 1991.
- Yano, K. and Ishihara, S. Tangent and cotangent bundles: dierential geometry, Pure and
Applied Mathematics 16 ( Marcel Dekker, New York, 1973).