Semi-strongly asymptotically non-expansive mappings and their applications on fixed point theory
Year 2017,
Volume: 46 Issue: 4, 613 - 620, 01.08.2017
Chris Lennard
,
Veysel Nezir
Abstract
We study fixed point theory for semi-strongly asymptotically nonexpansive and strongly asymptotically nonexpansive mappings. We consider these mappings for renormings of $l^1$ and $c_0$, and show that $l^1$ cannot be equivalently renormed to have the fixed point property for semi-strongly asymptotically nonexpansive mappings, while $c_0$ cannot be equivalently renormed to have the fixed point property for strongly asymptotically nonexpansive mappings Next and more importantly, we show reflexivity is equivalent to the fixed point property for affine semi-strongly asymptotically nonexpansive mappings in Banach lattices. Finally, we give an application of our results in Lorentz-Marcinkiewicz spaces $l_{w,\infty}^0$, and some examples of these new types of mappings associated with a large class of $c_0$-summing basic sequences in $c_0$.
References
- Alspach D. E., A fixed point free nonexpansive map, Proceedings of the American Mathematical
Society 82 , no. 3, 423424, 1981.
- Beauzamy B., Introduction to Banach spaces and their Geometry, 11 (Elsevier Science Pub.
Co., 1982).
- Domínguez Benavides T., A renorming of some nonseparable Banach spaces with the Fixed
Point Property, J. Math. Anal. Appl. 350 (2), 525530, 2009.
- Dowling P. N. and Lennard C. J., Every nonreflexive subspace of L1[0; 1] fails the fixed point
property, Proceedings of the American Mathematical Society 125 (2), 443446, 1997.
- Dowling P. N., Lennard C. J., and Turett B., Some fixed point results in l1 and c0, Nonlinear
Analysis 39, 929936, 2000.
- Dowling P. N., Lennard C. J., and Turett B., Weak compactness is equivalent to the fixed
point property in c0, Proc. Amer. Math. Soc. 132 (6) 16591666, 2004.
- van Dulst D., Equivalent norms and the fixed point property for nonexpansive mappings, J.
London Math. Soc. 25 (2), 139144, 1982.
- James R. C., Uniformly non-square Banach spaces, Ann. of Math. 80, 542550, 1964.
- Lennard C. J. and Nezir V., The closed, convex hull of every ai c0-summing basic sequence
fails the fpp for ane nonexpansive mappings, J. Math. Anal. Appl. 381, 678688, 2011.
- Lennard C. J. and Nezir V., Reflexivity is equivalent to the perturbed fixed point property
for cascading nonexpansive maps in Banach lattices, Nonlinear Analysis: Theory, Methods
& Applications 95, 414420, 2014.
- Lin P. K., There is an equivalent norm on $\ell_1$ that has the fixed point property, Nonlinear
Analysis 68, 23032308, 2008.
- Lindenstrauss J. and Tzafriri L., Classical Banach spaces I: Sequence Spaces, Ergebnisse
der Mathematik und ihrer Grenzgebiete, 92 (Springer-Verlag, 1977).
- Lindenstrauss J. and Tzafriri L., Classical Banach spaces II: Function Spaces, Ergebnisse
der Mathematik und ihrer Grenzgebiete, 97 (Springer-Verlag, 1979).
- Mil'man D. P. and Mil'man V. D., Some properties of non-reflexive Banach spaces, Mat.
Sb. (N.S.) 65, 486497, 1964 (in Russian).
- Nezir V., Fixed Point Properties for c0-like Spaces, Ph.D. thesis, University of Pittsburgh,
2012.
Year 2017,
Volume: 46 Issue: 4, 613 - 620, 01.08.2017
Chris Lennard
,
Veysel Nezir
References
- Alspach D. E., A fixed point free nonexpansive map, Proceedings of the American Mathematical
Society 82 , no. 3, 423424, 1981.
- Beauzamy B., Introduction to Banach spaces and their Geometry, 11 (Elsevier Science Pub.
Co., 1982).
- Domínguez Benavides T., A renorming of some nonseparable Banach spaces with the Fixed
Point Property, J. Math. Anal. Appl. 350 (2), 525530, 2009.
- Dowling P. N. and Lennard C. J., Every nonreflexive subspace of L1[0; 1] fails the fixed point
property, Proceedings of the American Mathematical Society 125 (2), 443446, 1997.
- Dowling P. N., Lennard C. J., and Turett B., Some fixed point results in l1 and c0, Nonlinear
Analysis 39, 929936, 2000.
- Dowling P. N., Lennard C. J., and Turett B., Weak compactness is equivalent to the fixed
point property in c0, Proc. Amer. Math. Soc. 132 (6) 16591666, 2004.
- van Dulst D., Equivalent norms and the fixed point property for nonexpansive mappings, J.
London Math. Soc. 25 (2), 139144, 1982.
- James R. C., Uniformly non-square Banach spaces, Ann. of Math. 80, 542550, 1964.
- Lennard C. J. and Nezir V., The closed, convex hull of every ai c0-summing basic sequence
fails the fpp for ane nonexpansive mappings, J. Math. Anal. Appl. 381, 678688, 2011.
- Lennard C. J. and Nezir V., Reflexivity is equivalent to the perturbed fixed point property
for cascading nonexpansive maps in Banach lattices, Nonlinear Analysis: Theory, Methods
& Applications 95, 414420, 2014.
- Lin P. K., There is an equivalent norm on $\ell_1$ that has the fixed point property, Nonlinear
Analysis 68, 23032308, 2008.
- Lindenstrauss J. and Tzafriri L., Classical Banach spaces I: Sequence Spaces, Ergebnisse
der Mathematik und ihrer Grenzgebiete, 92 (Springer-Verlag, 1977).
- Lindenstrauss J. and Tzafriri L., Classical Banach spaces II: Function Spaces, Ergebnisse
der Mathematik und ihrer Grenzgebiete, 97 (Springer-Verlag, 1979).
- Mil'man D. P. and Mil'man V. D., Some properties of non-reflexive Banach spaces, Mat.
Sb. (N.S.) 65, 486497, 1964 (in Russian).
- Nezir V., Fixed Point Properties for c0-like Spaces, Ph.D. thesis, University of Pittsburgh,
2012.