Research Article
BibTex RIS Cite

Linear penalized spline model estimation using ranked set sampling technique

Year 2017, Volume: 46 Issue: 4, 669 - 683, 01.08.2017

Abstract

Benefits of using Ranked Set Sampling (RSS) rather than Simple Random Sampling (SRS) are indeed significant when estimating population mean or estimating linear models. Significance of this sampling method clearly appears since it can increase efficiency of the estimated parameters and decrease sampling costs. This paper investigates and introduces RSS method to fit spline and penalized spline models parametrically. It shows that the estimated parameters using RSS are more efficient than the estimated parameters using SRS for both spline and penalized spline models. The superiority of RSS approach is demonstrated using a simulation study as well as the "Air pollution" environmental real data study. The approach in this paper can be illustrated for general smoothing spline models; for example B-spline,Radial spline etc, straightforwardly.

References

  • Al Kadiri, M. Carroll, R. and Wand, M. Marginal Longitudinal Semiparametric Regression via Penalized Splines, Statistics and Probability Letters 80, 12421252, 2010.
  • Chen, Z. Ranked-set sampling with regression-type estimators, Journal of Statistical Plan- ning Inference 92, 181-192, 2001.
  • Claeskens, A. Krivobokova, T. and Opsomer, D. Asymptotic Properties of Penalized Spline Estimators, Biometrika 96, 529544, 2009.
  • Cohen, Y. and Cohen, J. Statistics and Data with R: An Applied Approach Through Exam- ples (New York: Wiley, 2008).
  • Craven, P. and Wahba, G. Smoothing noisy data with spline functions: Estimating the cor- rect degree of smoothing by the method of generalized cross-validation, Numerische Math- ematik 31, 377403, 1979.
  • DiMatteo, I. Genovese, C. and Kass, R. Bayesian curve-tting with free-knot splines, Biometrika 88, 10551072, 2001.
  • Eilers, P. and Marx, B. Splines, Knots, and Penalties, Wiley Interdisciplinary Reviews: Computational Statistics 2, 637653, 2010.
  • Eilers, P. and Marx, B. Flexible smoothing with B-splines and penalties (with discussion), Statistical Sciences 11, 89121, 1996.
  • Eubank, R. The hat matrix for smoothing splines, Statistics and Probability Letters 2, 914, 1984.
  • Eubank, R. A simple smoothing spline, American Statistician 48, 103106, 1994.
  • Gu, C. Multivariate spline regression. InM. G. Schimek (eds.), Smoothing and Regression: Approaches, Computation and Application (NewYork: Wiley, 2000), 329355.
  • Hall, P. and Opsomer, J. Theory for Penalized Spline Regression, Biometrika 92, 105118, 2005.
  • Kim, K. and Skinner, J. Weighting in Survey Analysis Under Informative Sampling, Biometrika 100, 385398, 2013.
  • Li, Y. and Ruppert, D. On the Asymptotics of Penalized Splines, Biometrika 95, 415436, 2008.
  • McIntyre, G. A method for Unbiased Selective Sampling, Using Ranked Sets, Australian Journal of Agricultural Research 3, 385390, 1952.
  • Phillips, R. Iterated Feasible Generalized Least-Squares Estimation of Augmented Dynamic Panel Data, Journal of Business and Economic Statistics 28, 410422, 2010.
  • Ruppert, D. Empirical-bias bandwidths for local polynomial nonparametric regression and density estimation, Journal of the American Statistical Association 92, 10491062, 1997.
  • Ruppert, D. Wand, M. and Carroll, R. Semiparametric Regression. New York: Cambridge university Press, 2003.
  • Takahasi, K. and Wakimoto, K. On Unbiased Estimates of the Population Mean Based on the Sample Stratied by Means of Ordering, Annals of the Institute Statistical Mathematics 20, 421428, 1968.
  • Wahba, G. A Comparison of GCV and GML for Choosing the Smoothing Parameter in the Generalized Spline Smoothing Problem, Annals Statistics 13, 13781402, 1985.
  • Wand, M. A comparison of regression spline smoothing procedures, Computational Statis- tics 15, 443462, 2000.
  • Wolfe, D. Ranked Set Sampling: An Approach to More Ecient Data Collection, Statistical Science 19, 636643, 2004.
  • Wolfe, D. Ranked set sampling: Its relevance and impact on statistical inference, Interna- tional Scholarly Research Network , Probability and Statistics, DOI: 10.5402/2012/568385, 2012.
  • Yu, P. and Lam, K. Regression Estimator in Ranked Set Sampling, Biometrics 53 1070 1080, 1997.
  • Zhou, S. and Shen, X. Spatially adaptive regression splines and accurate knot selection schemes, Journal of the American Statistical Association 96, 247259, 2001.
Year 2017, Volume: 46 Issue: 4, 669 - 683, 01.08.2017

Abstract

References

  • Al Kadiri, M. Carroll, R. and Wand, M. Marginal Longitudinal Semiparametric Regression via Penalized Splines, Statistics and Probability Letters 80, 12421252, 2010.
  • Chen, Z. Ranked-set sampling with regression-type estimators, Journal of Statistical Plan- ning Inference 92, 181-192, 2001.
  • Claeskens, A. Krivobokova, T. and Opsomer, D. Asymptotic Properties of Penalized Spline Estimators, Biometrika 96, 529544, 2009.
  • Cohen, Y. and Cohen, J. Statistics and Data with R: An Applied Approach Through Exam- ples (New York: Wiley, 2008).
  • Craven, P. and Wahba, G. Smoothing noisy data with spline functions: Estimating the cor- rect degree of smoothing by the method of generalized cross-validation, Numerische Math- ematik 31, 377403, 1979.
  • DiMatteo, I. Genovese, C. and Kass, R. Bayesian curve-tting with free-knot splines, Biometrika 88, 10551072, 2001.
  • Eilers, P. and Marx, B. Splines, Knots, and Penalties, Wiley Interdisciplinary Reviews: Computational Statistics 2, 637653, 2010.
  • Eilers, P. and Marx, B. Flexible smoothing with B-splines and penalties (with discussion), Statistical Sciences 11, 89121, 1996.
  • Eubank, R. The hat matrix for smoothing splines, Statistics and Probability Letters 2, 914, 1984.
  • Eubank, R. A simple smoothing spline, American Statistician 48, 103106, 1994.
  • Gu, C. Multivariate spline regression. InM. G. Schimek (eds.), Smoothing and Regression: Approaches, Computation and Application (NewYork: Wiley, 2000), 329355.
  • Hall, P. and Opsomer, J. Theory for Penalized Spline Regression, Biometrika 92, 105118, 2005.
  • Kim, K. and Skinner, J. Weighting in Survey Analysis Under Informative Sampling, Biometrika 100, 385398, 2013.
  • Li, Y. and Ruppert, D. On the Asymptotics of Penalized Splines, Biometrika 95, 415436, 2008.
  • McIntyre, G. A method for Unbiased Selective Sampling, Using Ranked Sets, Australian Journal of Agricultural Research 3, 385390, 1952.
  • Phillips, R. Iterated Feasible Generalized Least-Squares Estimation of Augmented Dynamic Panel Data, Journal of Business and Economic Statistics 28, 410422, 2010.
  • Ruppert, D. Empirical-bias bandwidths for local polynomial nonparametric regression and density estimation, Journal of the American Statistical Association 92, 10491062, 1997.
  • Ruppert, D. Wand, M. and Carroll, R. Semiparametric Regression. New York: Cambridge university Press, 2003.
  • Takahasi, K. and Wakimoto, K. On Unbiased Estimates of the Population Mean Based on the Sample Stratied by Means of Ordering, Annals of the Institute Statistical Mathematics 20, 421428, 1968.
  • Wahba, G. A Comparison of GCV and GML for Choosing the Smoothing Parameter in the Generalized Spline Smoothing Problem, Annals Statistics 13, 13781402, 1985.
  • Wand, M. A comparison of regression spline smoothing procedures, Computational Statis- tics 15, 443462, 2000.
  • Wolfe, D. Ranked Set Sampling: An Approach to More Ecient Data Collection, Statistical Science 19, 636643, 2004.
  • Wolfe, D. Ranked set sampling: Its relevance and impact on statistical inference, Interna- tional Scholarly Research Network , Probability and Statistics, DOI: 10.5402/2012/568385, 2012.
  • Yu, P. and Lam, K. Regression Estimator in Ranked Set Sampling, Biometrics 53 1070 1080, 1997.
  • Zhou, S. and Shen, X. Spatially adaptive regression splines and accurate knot selection schemes, Journal of the American Statistical Association 96, 247259, 2001.
There are 25 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Statistics
Authors

M. Al Kadiri

Publication Date August 1, 2017
Published in Issue Year 2017 Volume: 46 Issue: 4

Cite

APA Al Kadiri, M. (2017). Linear penalized spline model estimation using ranked set sampling technique. Hacettepe Journal of Mathematics and Statistics, 46(4), 669-683.
AMA Al Kadiri M. Linear penalized spline model estimation using ranked set sampling technique. Hacettepe Journal of Mathematics and Statistics. August 2017;46(4):669-683.
Chicago Al Kadiri, M. “Linear Penalized Spline Model Estimation Using Ranked Set Sampling Technique”. Hacettepe Journal of Mathematics and Statistics 46, no. 4 (August 2017): 669-83.
EndNote Al Kadiri M (August 1, 2017) Linear penalized spline model estimation using ranked set sampling technique. Hacettepe Journal of Mathematics and Statistics 46 4 669–683.
IEEE M. Al Kadiri, “Linear penalized spline model estimation using ranked set sampling technique”, Hacettepe Journal of Mathematics and Statistics, vol. 46, no. 4, pp. 669–683, 2017.
ISNAD Al Kadiri, M. “Linear Penalized Spline Model Estimation Using Ranked Set Sampling Technique”. Hacettepe Journal of Mathematics and Statistics 46/4 (August 2017), 669-683.
JAMA Al Kadiri M. Linear penalized spline model estimation using ranked set sampling technique. Hacettepe Journal of Mathematics and Statistics. 2017;46:669–683.
MLA Al Kadiri, M. “Linear Penalized Spline Model Estimation Using Ranked Set Sampling Technique”. Hacettepe Journal of Mathematics and Statistics, vol. 46, no. 4, 2017, pp. 669-83.
Vancouver Al Kadiri M. Linear penalized spline model estimation using ranked set sampling technique. Hacettepe Journal of Mathematics and Statistics. 2017;46(4):669-83.