Araştırma Makalesi
BibTex RIS Kaynak Göster

Simultaneous approximation of the Riemann conformal map and its derivatives by Bieberbach polynomials

Yıl 2017, Cilt: 46 Sayı: 2, 209 - 216, 01.04.2017

Öz

Let $G$ be a domain in the complex plane $\mathbb{C}$ bounded by a rectifiable Jordan curve $\Gamma$, let $z_0\in G$ and let $\varphi_0$ be the Riemann conformal map of $G$ onto $\mathbb{D}_r:=\{ w\in\mathbb{C}\,:\, |w|<r \}$, normalized by $\varphi_0(z_0)=0$, $\varphi_0'(z_0)=1$. In this work the simultaneous approximations of $\varphi_0$ and its derivatives by Bieberbach polynomials are investigated. The approximation rate in dependence of the smoothness parameters of the considered domains is estimated. 

Kaynakça

  • Abdullayev, F. G.: Uniform convergence of the Bieberbach polynomials inside and on the closure of domains in the complex plane. East J. Approx. 7(1), 77-101(2001)
  • Abdullayev, F. G., Aral, N.: The Relation Between Different Norms of Algebraic Polynomials in the Regions of Complex Plane. Azerbaijan Journal of Mathematics, Vol. 1(2), 70-82(2011)
  • Alper, S. Y.: Approximation in the mean of analytic functions of class Ep. (Russian), In: Investigations on the modern problems of the function theory of a complex variable, Moscow: Gos. Izdat. Fiz. Mat. Lit., 273-286(1960)
  • Andrievskii, V. V.: Convergence of Bieberbach polynomials in domains with quasi-conformal boundary. Ukrainian Math. J. 35(3), 233-236(1983)
  • Andrievskii, V. V., Gaier, D.: Uniform convergence of Bieberbach polynomials in domains with piecewise quasianalytic boundary. Mitt. Math. Sem. Giessen 211, 49-60(1992)
  • Andrievskii, V. V., Pritsker, I. E.: Convergence of Bieberbach polynomials in domains with interior cusps. J. d'Analyse Math. 82, 315-332(2000)
  • Andrievskii, V. V., Pritsker, I. E., Varga, R.: Simultaneous approximation and interpolation of functions on continua in the complex plane. J. Math. Pures Appl. 80, 373-388(2001)
  • De Vore, R. A., Lorentz, G. G.: Constructive Approximation. Springer-Verlag, Berlin (1993)
  • Dyn'kn, E. M.: The rate of polynomial approximation in the complex domain. In Complex analysis and spectral theory (Leningrad 1979-1980), Springer-Verlag, Berlin, 90-142(1981)
  • Gaier, D.: Lectures on Complex Approximation. Birkhauser, Boston (1987)
  • Gaier, D.: On the convergence of the Beberbach polynomials in regions with corners. Constr. Approximation, 4, 289-305(1988)
  • Goluzin, G. M.: Geometric Theory of Functions of a Complex Variable.:Translation of Mathematical Monographs. Vol. 26: AMS; (1969)
  • Israfilov, D. M.: Approximation by p-Faber polynomials in the weighted Lebesgue space $L^p(L,w)$ and the Bieberbach polynomials. Constr. Approx. 17, 335-351(2001)
  • Israfilov, D. M.: Uniform convergence of the Bieberbach polynomials in closed smooth domains of bounded boundary rotation. Journal of Approx. Theory, 125, 116-130(2003)
  • Keldych, M. V.: Sur I'appoximation en moyenne quadratique des fonctions analitiques. Math. Sb., 5 (47)), 391-401(1939)
  • Mergelyan, S. N.: Certain questions of the constructive theory of functions. (Russian), Trudy Math, Inst. Steklov, 37, 1-91(1951)
  • Pommerenke, Ch.: Boundary Behavior of Conformal Maps, Springer-Verlag, Berlin (1991)
  • Simonenko, I. B.: On the convergence of Bieberbach polynomials in the case of a Lipschitz domain. Math. USSR-Inv., 13, 166-174(1978)
  • Suetin, P. K.: Polynomials Orthogonal over a Region and Bieberbach Polynomials. Proceed- ings of the Steklov Institute of Mathematics, Amer. Math. Soc. Providence, Rhode Island, (1975)
  • Warschawski, S.: Über das Randverhalten der Ableitung der Abbildungsfunktionen bei konformer Abbildung. Math. Z., 35, 321-456(1932)
  • Wu Xue-Mou.: On Bieberbach polynomials. Acta Math. Sinica, 13, 145-151(1963)
Yıl 2017, Cilt: 46 Sayı: 2, 209 - 216, 01.04.2017

Öz

Kaynakça

  • Abdullayev, F. G.: Uniform convergence of the Bieberbach polynomials inside and on the closure of domains in the complex plane. East J. Approx. 7(1), 77-101(2001)
  • Abdullayev, F. G., Aral, N.: The Relation Between Different Norms of Algebraic Polynomials in the Regions of Complex Plane. Azerbaijan Journal of Mathematics, Vol. 1(2), 70-82(2011)
  • Alper, S. Y.: Approximation in the mean of analytic functions of class Ep. (Russian), In: Investigations on the modern problems of the function theory of a complex variable, Moscow: Gos. Izdat. Fiz. Mat. Lit., 273-286(1960)
  • Andrievskii, V. V.: Convergence of Bieberbach polynomials in domains with quasi-conformal boundary. Ukrainian Math. J. 35(3), 233-236(1983)
  • Andrievskii, V. V., Gaier, D.: Uniform convergence of Bieberbach polynomials in domains with piecewise quasianalytic boundary. Mitt. Math. Sem. Giessen 211, 49-60(1992)
  • Andrievskii, V. V., Pritsker, I. E.: Convergence of Bieberbach polynomials in domains with interior cusps. J. d'Analyse Math. 82, 315-332(2000)
  • Andrievskii, V. V., Pritsker, I. E., Varga, R.: Simultaneous approximation and interpolation of functions on continua in the complex plane. J. Math. Pures Appl. 80, 373-388(2001)
  • De Vore, R. A., Lorentz, G. G.: Constructive Approximation. Springer-Verlag, Berlin (1993)
  • Dyn'kn, E. M.: The rate of polynomial approximation in the complex domain. In Complex analysis and spectral theory (Leningrad 1979-1980), Springer-Verlag, Berlin, 90-142(1981)
  • Gaier, D.: Lectures on Complex Approximation. Birkhauser, Boston (1987)
  • Gaier, D.: On the convergence of the Beberbach polynomials in regions with corners. Constr. Approximation, 4, 289-305(1988)
  • Goluzin, G. M.: Geometric Theory of Functions of a Complex Variable.:Translation of Mathematical Monographs. Vol. 26: AMS; (1969)
  • Israfilov, D. M.: Approximation by p-Faber polynomials in the weighted Lebesgue space $L^p(L,w)$ and the Bieberbach polynomials. Constr. Approx. 17, 335-351(2001)
  • Israfilov, D. M.: Uniform convergence of the Bieberbach polynomials in closed smooth domains of bounded boundary rotation. Journal of Approx. Theory, 125, 116-130(2003)
  • Keldych, M. V.: Sur I'appoximation en moyenne quadratique des fonctions analitiques. Math. Sb., 5 (47)), 391-401(1939)
  • Mergelyan, S. N.: Certain questions of the constructive theory of functions. (Russian), Trudy Math, Inst. Steklov, 37, 1-91(1951)
  • Pommerenke, Ch.: Boundary Behavior of Conformal Maps, Springer-Verlag, Berlin (1991)
  • Simonenko, I. B.: On the convergence of Bieberbach polynomials in the case of a Lipschitz domain. Math. USSR-Inv., 13, 166-174(1978)
  • Suetin, P. K.: Polynomials Orthogonal over a Region and Bieberbach Polynomials. Proceed- ings of the Steklov Institute of Mathematics, Amer. Math. Soc. Providence, Rhode Island, (1975)
  • Warschawski, S.: Über das Randverhalten der Ableitung der Abbildungsfunktionen bei konformer Abbildung. Math. Z., 35, 321-456(1932)
  • Wu Xue-Mou.: On Bieberbach polynomials. Acta Math. Sinica, 13, 145-151(1963)
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Matematik
Yazarlar

Daniyal M. Israfilov

Yayımlanma Tarihi 1 Nisan 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 46 Sayı: 2

Kaynak Göster

APA Israfilov, D. M. (2017). Simultaneous approximation of the Riemann conformal map and its derivatives by Bieberbach polynomials. Hacettepe Journal of Mathematics and Statistics, 46(2), 209-216.
AMA Israfilov DM. Simultaneous approximation of the Riemann conformal map and its derivatives by Bieberbach polynomials. Hacettepe Journal of Mathematics and Statistics. Nisan 2017;46(2):209-216.
Chicago Israfilov, Daniyal M. “Simultaneous Approximation of the Riemann Conformal Map and Its Derivatives by Bieberbach Polynomials”. Hacettepe Journal of Mathematics and Statistics 46, sy. 2 (Nisan 2017): 209-16.
EndNote Israfilov DM (01 Nisan 2017) Simultaneous approximation of the Riemann conformal map and its derivatives by Bieberbach polynomials. Hacettepe Journal of Mathematics and Statistics 46 2 209–216.
IEEE D. M. Israfilov, “Simultaneous approximation of the Riemann conformal map and its derivatives by Bieberbach polynomials”, Hacettepe Journal of Mathematics and Statistics, c. 46, sy. 2, ss. 209–216, 2017.
ISNAD Israfilov, Daniyal M. “Simultaneous Approximation of the Riemann Conformal Map and Its Derivatives by Bieberbach Polynomials”. Hacettepe Journal of Mathematics and Statistics 46/2 (Nisan 2017), 209-216.
JAMA Israfilov DM. Simultaneous approximation of the Riemann conformal map and its derivatives by Bieberbach polynomials. Hacettepe Journal of Mathematics and Statistics. 2017;46:209–216.
MLA Israfilov, Daniyal M. “Simultaneous Approximation of the Riemann Conformal Map and Its Derivatives by Bieberbach Polynomials”. Hacettepe Journal of Mathematics and Statistics, c. 46, sy. 2, 2017, ss. 209-16.
Vancouver Israfilov DM. Simultaneous approximation of the Riemann conformal map and its derivatives by Bieberbach polynomials. Hacettepe Journal of Mathematics and Statistics. 2017;46(2):209-16.