Let $G$ be a domain in the complex plane $\mathbb{C}$ bounded by a rectifiable Jordan curve $\Gamma$, let $z_0\in G$ and let $\varphi_0$ be the Riemann conformal map of $G$ onto $\mathbb{D}_r:=\{ w\in\mathbb{C}\,:\, |w|<r \}$, normalized by $\varphi_0(z_0)=0$, $\varphi_0'(z_0)=1$. In this work the simultaneous approximations of $\varphi_0$ and its derivatives by Bieberbach polynomials are investigated. The approximation rate in dependence of the smoothness parameters of the considered domains is estimated.
Bieberbach polynomials conformal map simultaneous approximation
Birincil Dil | İngilizce |
---|---|
Konular | Matematik |
Bölüm | Matematik |
Yazarlar | |
Yayımlanma Tarihi | 1 Nisan 2017 |
Yayımlandığı Sayı | Yıl 2017 Cilt: 46 Sayı: 2 |