Research Article
BibTex RIS Cite
Year 2018, Volume: 47 Issue: 5, 1120 - 1127, 16.10.2018

Abstract

References

  • Gorbachuk, V.I and Gorbachuk, M.I. Boundary Value Problems for Operator Differential Equations, Kluwer Academic Publisher, Dordrecht, 1991.
  • Hörmander, L. On the Theory of General Partial Differential Operators, Acta Math. 94 (1), 161-248, 1955.
  • Kato, T. Perturbation Theory for Linear Operators, Springer-Verlag Inc., New York, 1966, 592 pp.
  • Levchuk, V.V. Smooth Maximally Dissipative Boundary-Value Problems for a Parabolic Equation in a Hilbert Space, Ukrainian Math. J. 35 (4), 502-507, 1983.

Maximal accretive singular quasi-differential operators

Year 2018, Volume: 47 Issue: 5, 1120 - 1127, 16.10.2018

Abstract

In this paper firstly all maximal accretive extensions of the minimal operator generated by a first order linear singular quasi-differential expression in the weighted Hilbert space of vector-functions on right semi-axis are described. Later on, the structure of spectrum set of these extensions has been researched.

References

  • Gorbachuk, V.I and Gorbachuk, M.I. Boundary Value Problems for Operator Differential Equations, Kluwer Academic Publisher, Dordrecht, 1991.
  • Hörmander, L. On the Theory of General Partial Differential Operators, Acta Math. 94 (1), 161-248, 1955.
  • Kato, T. Perturbation Theory for Linear Operators, Springer-Verlag Inc., New York, 1966, 592 pp.
  • Levchuk, V.V. Smooth Maximally Dissipative Boundary-Value Problems for a Parabolic Equation in a Hilbert Space, Ukrainian Math. J. 35 (4), 502-507, 1983.
There are 4 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Pembe İpek

Zameddin İ. İsmailov

Publication Date October 16, 2018
Published in Issue Year 2018 Volume: 47 Issue: 5

Cite

APA İpek, P., & İsmailov, Z. İ. (2018). Maximal accretive singular quasi-differential operators. Hacettepe Journal of Mathematics and Statistics, 47(5), 1120-1127.
AMA İpek P, İsmailov Zİ. Maximal accretive singular quasi-differential operators. Hacettepe Journal of Mathematics and Statistics. October 2018;47(5):1120-1127.
Chicago İpek, Pembe, and Zameddin İ. İsmailov. “Maximal Accretive Singular Quasi-Differential Operators”. Hacettepe Journal of Mathematics and Statistics 47, no. 5 (October 2018): 1120-27.
EndNote İpek P, İsmailov Zİ (October 1, 2018) Maximal accretive singular quasi-differential operators. Hacettepe Journal of Mathematics and Statistics 47 5 1120–1127.
IEEE P. İpek and Z. İ. İsmailov, “Maximal accretive singular quasi-differential operators”, Hacettepe Journal of Mathematics and Statistics, vol. 47, no. 5, pp. 1120–1127, 2018.
ISNAD İpek, Pembe - İsmailov, Zameddin İ. “Maximal Accretive Singular Quasi-Differential Operators”. Hacettepe Journal of Mathematics and Statistics 47/5 (October 2018), 1120-1127.
JAMA İpek P, İsmailov Zİ. Maximal accretive singular quasi-differential operators. Hacettepe Journal of Mathematics and Statistics. 2018;47:1120–1127.
MLA İpek, Pembe and Zameddin İ. İsmailov. “Maximal Accretive Singular Quasi-Differential Operators”. Hacettepe Journal of Mathematics and Statistics, vol. 47, no. 5, 2018, pp. 1120-7.
Vancouver İpek P, İsmailov Zİ. Maximal accretive singular quasi-differential operators. Hacettepe Journal of Mathematics and Statistics. 2018;47(5):1120-7.