Gorbachuk, V.I and Gorbachuk, M.I. Boundary Value Problems for Operator Differential
Equations, Kluwer Academic Publisher, Dordrecht, 1991.
Hörmander, L. On the Theory of General Partial Differential Operators, Acta Math. 94
(1), 161-248, 1955.
Kato, T. Perturbation Theory for Linear Operators, Springer-Verlag Inc., New York, 1966,
592 pp.
Levchuk, V.V. Smooth Maximally Dissipative Boundary-Value Problems for a Parabolic
Equation in a Hilbert Space, Ukrainian Math. J. 35 (4), 502-507, 1983.
In this paper firstly all maximal accretive extensions of the minimal operator generated by a first order linear singular quasi-differential expression in the weighted Hilbert space of vector-functions on right semi-axis are described. Later on, the structure of spectrum set of these extensions has been researched.
Gorbachuk, V.I and Gorbachuk, M.I. Boundary Value Problems for Operator Differential
Equations, Kluwer Academic Publisher, Dordrecht, 1991.
Hörmander, L. On the Theory of General Partial Differential Operators, Acta Math. 94
(1), 161-248, 1955.
Kato, T. Perturbation Theory for Linear Operators, Springer-Verlag Inc., New York, 1966,
592 pp.
Levchuk, V.V. Smooth Maximally Dissipative Boundary-Value Problems for a Parabolic
Equation in a Hilbert Space, Ukrainian Math. J. 35 (4), 502-507, 1983.
İpek, P., & İsmailov, Z. İ. (2018). Maximal accretive singular quasi-differential operators. Hacettepe Journal of Mathematics and Statistics, 47(5), 1120-1127.
AMA
İpek P, İsmailov Zİ. Maximal accretive singular quasi-differential operators. Hacettepe Journal of Mathematics and Statistics. October 2018;47(5):1120-1127.
Chicago
İpek, Pembe, and Zameddin İ. İsmailov. “Maximal Accretive Singular Quasi-Differential Operators”. Hacettepe Journal of Mathematics and Statistics 47, no. 5 (October 2018): 1120-27.
P. İpek and Z. İ. İsmailov, “Maximal accretive singular quasi-differential operators”, Hacettepe Journal of Mathematics and Statistics, vol. 47, no. 5, pp. 1120–1127, 2018.
ISNAD
İpek, Pembe - İsmailov, Zameddin İ. “Maximal Accretive Singular Quasi-Differential Operators”. Hacettepe Journal of Mathematics and Statistics 47/5 (October 2018), 1120-1127.
JAMA
İpek P, İsmailov Zİ. Maximal accretive singular quasi-differential operators. Hacettepe Journal of Mathematics and Statistics. 2018;47:1120–1127.
MLA
İpek, Pembe and Zameddin İ. İsmailov. “Maximal Accretive Singular Quasi-Differential Operators”. Hacettepe Journal of Mathematics and Statistics, vol. 47, no. 5, 2018, pp. 1120-7.
Vancouver
İpek P, İsmailov Zİ. Maximal accretive singular quasi-differential operators. Hacettepe Journal of Mathematics and Statistics. 2018;47(5):1120-7.