Araştırma Makalesi
BibTex RIS Kaynak Göster

Closure, interior and neighbourhood in a category

Yıl 2018, Cilt: 47 Sayı: 6, 1512 - 1520, 12.12.2018

Öz

The natural correspondences in topology between closure, interior and neighbourhood no longer hold in an abstract categorical setting where subobject lattices are not necessarily Boolean algebras.  We analyse three canonical correspondences between closure, interior and neighbourhood operators in a category endowed with a subobject structure. While these correspondences coincide in general topology, the analysis highlights subtle differences which distinguish different approaches taken in the literature.

Kaynakça

  • Adamek, J., Herrlich, H., Strecker, G.E. Abstract and concrete categories, Whiley, 1990.
  • Castellini, G. Categorical closure operators, Mathematics: Theory & Applications Birkhauser Boston Inc., Boston, MA, 2003.
  • Castellini, G. Interior operators in a category: idempotency and heredity, Topology Appl. 158 (17), 2332--2339, 2011.
  • Castellini, G. Some remarks on interior operators and the functional property, Quaest. Math. 39 (2), 275--287, 2016.
  • Castellini, G., Holgate, D. Closure operator constructions depending on one parameter, Quaest. Math. 26 (3), 289--305, 2003.
  • Castellini, G., Koslowski, J., Strecker, G.E. An approach to the dual of regular closure operators, Cahiers Topologie Géom. Différentielle Catégoriques 35, 109--128, 1994.
  • Clementino, M. M., Giuli, E., Tholen, W. A functional approach to general topology, in: Categorical foundations 97, Encyclopedia Math. Appl., 103--163, Cambridge Univ. Press, Cambridge, 2004.
  • Clementino, M. M., Gutierres, G. On regular and homological closure operators, Cah. Topol. Géom. Différ. Catég. 51 (2), 127--142, 2010.
  • Dikranjan, D., Giuli, E. Closure operators I, Topology Appl. 27 (2), 129--143, 1987.
  • Dikranjan, D., Giuli, E., Tholen, W. Closure operators II, in: Categorical topology and its relation to analysis, algebra and combinatorics, Prague, 1988, 297--335, World Sci. Publishing, Teaneck, NJ, 1989.
  • Dikranjan, D., Tholen, W. Categorical structure of closure operators, Kluwer Academic Publishers Group, Dordrecht, 1995.
  • Giuli, E., Slapal, J. Raster convergence with respect to a closure operator, Cah. Topol. Géom. Différ. Catég. 46 (4), 275--300, 2005.
  • Giuli, E., Slapal, J. Neighborhoods with respect to a categorical closure operator, Acta Math. Hungar. 124 (1-2), 1--14, 2009.
  • Giuli, E., Tholen, W. Openness with respect to a closure operator, Appl. Categ. Structures 8 (3), 487--502, 2000.
  • Holgate, D., Slapal, J. Categorical neighborhood operators, Topology Appl. 158 (17), 2356--2365, 2011.
  • Razafindrakoto, A., Holgate, D. Interior and neighbourhood, Topology Appl. 168, 144--152, 2014.
  • Slapal, J., Net spaces in categorical topology, Ann. N. Y. Acad. Sci. 806, 393--412, 1996.
  • Slapal, J., Neighborhoods and convergence with respect to a closure operator, Math. Slovaca 61 (5), 717--732, 2011.
  • Slapal, J., Compactness and convergence with respect to a neighborhood operator, Collect. Math. 63 (2), 123--137, 2012.
  • Vorster, S. J. R., Interior operators in general categories, Quaest. Math. 23 (4), 405--416, 2000.
Yıl 2018, Cilt: 47 Sayı: 6, 1512 - 1520, 12.12.2018

Öz

Kaynakça

  • Adamek, J., Herrlich, H., Strecker, G.E. Abstract and concrete categories, Whiley, 1990.
  • Castellini, G. Categorical closure operators, Mathematics: Theory & Applications Birkhauser Boston Inc., Boston, MA, 2003.
  • Castellini, G. Interior operators in a category: idempotency and heredity, Topology Appl. 158 (17), 2332--2339, 2011.
  • Castellini, G. Some remarks on interior operators and the functional property, Quaest. Math. 39 (2), 275--287, 2016.
  • Castellini, G., Holgate, D. Closure operator constructions depending on one parameter, Quaest. Math. 26 (3), 289--305, 2003.
  • Castellini, G., Koslowski, J., Strecker, G.E. An approach to the dual of regular closure operators, Cahiers Topologie Géom. Différentielle Catégoriques 35, 109--128, 1994.
  • Clementino, M. M., Giuli, E., Tholen, W. A functional approach to general topology, in: Categorical foundations 97, Encyclopedia Math. Appl., 103--163, Cambridge Univ. Press, Cambridge, 2004.
  • Clementino, M. M., Gutierres, G. On regular and homological closure operators, Cah. Topol. Géom. Différ. Catég. 51 (2), 127--142, 2010.
  • Dikranjan, D., Giuli, E. Closure operators I, Topology Appl. 27 (2), 129--143, 1987.
  • Dikranjan, D., Giuli, E., Tholen, W. Closure operators II, in: Categorical topology and its relation to analysis, algebra and combinatorics, Prague, 1988, 297--335, World Sci. Publishing, Teaneck, NJ, 1989.
  • Dikranjan, D., Tholen, W. Categorical structure of closure operators, Kluwer Academic Publishers Group, Dordrecht, 1995.
  • Giuli, E., Slapal, J. Raster convergence with respect to a closure operator, Cah. Topol. Géom. Différ. Catég. 46 (4), 275--300, 2005.
  • Giuli, E., Slapal, J. Neighborhoods with respect to a categorical closure operator, Acta Math. Hungar. 124 (1-2), 1--14, 2009.
  • Giuli, E., Tholen, W. Openness with respect to a closure operator, Appl. Categ. Structures 8 (3), 487--502, 2000.
  • Holgate, D., Slapal, J. Categorical neighborhood operators, Topology Appl. 158 (17), 2356--2365, 2011.
  • Razafindrakoto, A., Holgate, D. Interior and neighbourhood, Topology Appl. 168, 144--152, 2014.
  • Slapal, J., Net spaces in categorical topology, Ann. N. Y. Acad. Sci. 806, 393--412, 1996.
  • Slapal, J., Neighborhoods and convergence with respect to a closure operator, Math. Slovaca 61 (5), 717--732, 2011.
  • Slapal, J., Compactness and convergence with respect to a neighborhood operator, Collect. Math. 63 (2), 123--137, 2012.
  • Vorster, S. J. R., Interior operators in general categories, Quaest. Math. 23 (4), 405--416, 2000.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Matematik
Yazarlar

David Holgate Bu kişi benim

Josef Slapal

Yayımlanma Tarihi 12 Aralık 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 47 Sayı: 6

Kaynak Göster

APA Holgate, D., & Slapal, J. (2018). Closure, interior and neighbourhood in a category. Hacettepe Journal of Mathematics and Statistics, 47(6), 1512-1520.
AMA Holgate D, Slapal J. Closure, interior and neighbourhood in a category. Hacettepe Journal of Mathematics and Statistics. Aralık 2018;47(6):1512-1520.
Chicago Holgate, David, ve Josef Slapal. “Closure, Interior and Neighbourhood in a Category”. Hacettepe Journal of Mathematics and Statistics 47, sy. 6 (Aralık 2018): 1512-20.
EndNote Holgate D, Slapal J (01 Aralık 2018) Closure, interior and neighbourhood in a category. Hacettepe Journal of Mathematics and Statistics 47 6 1512–1520.
IEEE D. Holgate ve J. Slapal, “Closure, interior and neighbourhood in a category”, Hacettepe Journal of Mathematics and Statistics, c. 47, sy. 6, ss. 1512–1520, 2018.
ISNAD Holgate, David - Slapal, Josef. “Closure, Interior and Neighbourhood in a Category”. Hacettepe Journal of Mathematics and Statistics 47/6 (Aralık 2018), 1512-1520.
JAMA Holgate D, Slapal J. Closure, interior and neighbourhood in a category. Hacettepe Journal of Mathematics and Statistics. 2018;47:1512–1520.
MLA Holgate, David ve Josef Slapal. “Closure, Interior and Neighbourhood in a Category”. Hacettepe Journal of Mathematics and Statistics, c. 47, sy. 6, 2018, ss. 1512-20.
Vancouver Holgate D, Slapal J. Closure, interior and neighbourhood in a category. Hacettepe Journal of Mathematics and Statistics. 2018;47(6):1512-20.