Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2018, Cilt: 47 Sayı: 6, 1564 - 1577, 12.12.2018

Öz

Kaynakça

  • Aiena,P., Semi-Fredholm operators, perturbations theory and localized SVEP, XX Escuela Venezolana de Matematicas, Merida, Venezuela 2007.
  • Aluthge, A., Wang, D., The joint approximate point spectrum of an operator, Hokkaido Math. J., 31 (2002), 187-197.
  • Ando, T., Operators with a norm condition, Acta Sci. Math.(Szeged), 33, 169-178, 1972.
  • Arora, S. C., Thukral, J. K., On a class of operators, Glas. Math. Ser. III, 21(41) no.2, 381-386, 1986.
  • Duggal, B. P., Jeon, I. H., Kim, I. H., On $*$-paranormal contractions and properties for $*$-class $\mathcal{A}$ operators, Linear Alg. Appl. 436, 954-962, 2012.
  • Furuta, T., On the class of paranormal operators, Proc. Japan Acad. 43, 594-598, 1967.
  • Furuta, T., Ito, M., Yamazaki, T., A subclass of paranormal operators including class of log-hyponormal and several related classes, Sci. Math. 1, no.3, 389-403, 1998.
  • Han, J. K., Lee, H. Y., Lee, W. Y., Invertible completions of $2\times 2$ upper triangular operator matrices Proc. Amer. Math. Soc., 128, no.1, 119-123, 2000.
  • Hansen, F., An operator inequality, Math. Ann. 246, 249-250, 1980.
  • Kim, I. H., Weyl's theorem and tensor product for operators satisfying $T^{*k}|T^{2}|T^{k} \geq T^{*k}|T|^{2}T^{k}$, J. Korean Math. Soc. 47, No.2, 351-361, 2010.
  • Kim, I. H., On spectral continuities and tensor products of operators, J. Chungcheong Math. Soc., 24, No.1, 113-119, 2011.
  • McCarthy, C. A., $c_{p}$, Israel J. Math. 5, 249-271, 1967.
  • Panayappan, S., Radharamani, A., A Note on $p$-$*$-paranormal Operators and Absolute-$k^{*}$-Paranormal Operators, Int. J. Math. Anal. 2, no.25-28, 1257-1261, 2008.
  • Saito, T., Hyponormal operators and Related topics, Lecture notes in Math., Springer-Verlag, 247, 1971.
  • Stochel, J., Seminormality of operators from their tensor products, Proc. Amer. Math. Soc., 124, 435-440, 1996.

On $m$-quasi class $\mathcal{A}(k^{*})$ and absolute-$(k^{*},m)$-paranormal operators

Yıl 2018, Cilt: 47 Sayı: 6, 1564 - 1577, 12.12.2018

Öz

In this paper, we introduce a new class of operators, called $m$-quasi class $\mathcal{A}(k^{*})$ operators, which is a superclass of hyponormal operators and a subclass of absolute-$(k^{*},m)$-paranormal operators. We will show basic structural properties and some spectral properties of this class of operators. We show that if $T$ is $m$-quasi class $\mathcal{A}(k^{*})$, then $\sigma _{np}(T)\setminus \{0\}=\sigma _{p}(T)\setminus \{0\}$, $\sigma _{na}(T)\setminus \{0\}=\sigma _{a}(T)\setminus \{0\}$ and $T-\mu $ has finite ascent for all $\mu\in\mathbb{C}.$ Also, we consider the tensor product of $m$-quasi class $\mathcal{A}(k^{*})$ operators.

Kaynakça

  • Aiena,P., Semi-Fredholm operators, perturbations theory and localized SVEP, XX Escuela Venezolana de Matematicas, Merida, Venezuela 2007.
  • Aluthge, A., Wang, D., The joint approximate point spectrum of an operator, Hokkaido Math. J., 31 (2002), 187-197.
  • Ando, T., Operators with a norm condition, Acta Sci. Math.(Szeged), 33, 169-178, 1972.
  • Arora, S. C., Thukral, J. K., On a class of operators, Glas. Math. Ser. III, 21(41) no.2, 381-386, 1986.
  • Duggal, B. P., Jeon, I. H., Kim, I. H., On $*$-paranormal contractions and properties for $*$-class $\mathcal{A}$ operators, Linear Alg. Appl. 436, 954-962, 2012.
  • Furuta, T., On the class of paranormal operators, Proc. Japan Acad. 43, 594-598, 1967.
  • Furuta, T., Ito, M., Yamazaki, T., A subclass of paranormal operators including class of log-hyponormal and several related classes, Sci. Math. 1, no.3, 389-403, 1998.
  • Han, J. K., Lee, H. Y., Lee, W. Y., Invertible completions of $2\times 2$ upper triangular operator matrices Proc. Amer. Math. Soc., 128, no.1, 119-123, 2000.
  • Hansen, F., An operator inequality, Math. Ann. 246, 249-250, 1980.
  • Kim, I. H., Weyl's theorem and tensor product for operators satisfying $T^{*k}|T^{2}|T^{k} \geq T^{*k}|T|^{2}T^{k}$, J. Korean Math. Soc. 47, No.2, 351-361, 2010.
  • Kim, I. H., On spectral continuities and tensor products of operators, J. Chungcheong Math. Soc., 24, No.1, 113-119, 2011.
  • McCarthy, C. A., $c_{p}$, Israel J. Math. 5, 249-271, 1967.
  • Panayappan, S., Radharamani, A., A Note on $p$-$*$-paranormal Operators and Absolute-$k^{*}$-Paranormal Operators, Int. J. Math. Anal. 2, no.25-28, 1257-1261, 2008.
  • Saito, T., Hyponormal operators and Related topics, Lecture notes in Math., Springer-Verlag, 247, 1971.
  • Stochel, J., Seminormality of operators from their tensor products, Proc. Amer. Math. Soc., 124, 435-440, 1996.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Matematik
Yazarlar

İlmi Hoxha Bu kişi benim

Naim L. Braha

Kotaro Tanahashi Bu kişi benim

Yayımlanma Tarihi 12 Aralık 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 47 Sayı: 6

Kaynak Göster

APA Hoxha, İ., Braha, N. L., & Tanahashi, K. (2018). On $m$-quasi class $\mathcal{A}(k^{*})$ and absolute-$(k^{*},m)$-paranormal operators. Hacettepe Journal of Mathematics and Statistics, 47(6), 1564-1577.
AMA Hoxha İ, Braha NL, Tanahashi K. On $m$-quasi class $\mathcal{A}(k^{*})$ and absolute-$(k^{*},m)$-paranormal operators. Hacettepe Journal of Mathematics and Statistics. Aralık 2018;47(6):1564-1577.
Chicago Hoxha, İlmi, Naim L. Braha, ve Kotaro Tanahashi. “On $m$-Quasi Class $\mathcal{A}(k^{*})$ and Absolute-$(k^{*},m)$-Paranormal Operators”. Hacettepe Journal of Mathematics and Statistics 47, sy. 6 (Aralık 2018): 1564-77.
EndNote Hoxha İ, Braha NL, Tanahashi K (01 Aralık 2018) On $m$-quasi class $\mathcal{A}(k^{*})$ and absolute-$(k^{*},m)$-paranormal operators. Hacettepe Journal of Mathematics and Statistics 47 6 1564–1577.
IEEE İ. Hoxha, N. L. Braha, ve K. Tanahashi, “On $m$-quasi class $\mathcal{A}(k^{*})$ and absolute-$(k^{*},m)$-paranormal operators”, Hacettepe Journal of Mathematics and Statistics, c. 47, sy. 6, ss. 1564–1577, 2018.
ISNAD Hoxha, İlmi vd. “On $m$-Quasi Class $\mathcal{A}(k^{*})$ and Absolute-$(k^{*},m)$-Paranormal Operators”. Hacettepe Journal of Mathematics and Statistics 47/6 (Aralık 2018), 1564-1577.
JAMA Hoxha İ, Braha NL, Tanahashi K. On $m$-quasi class $\mathcal{A}(k^{*})$ and absolute-$(k^{*},m)$-paranormal operators. Hacettepe Journal of Mathematics and Statistics. 2018;47:1564–1577.
MLA Hoxha, İlmi vd. “On $m$-Quasi Class $\mathcal{A}(k^{*})$ and Absolute-$(k^{*},m)$-Paranormal Operators”. Hacettepe Journal of Mathematics and Statistics, c. 47, sy. 6, 2018, ss. 1564-77.
Vancouver Hoxha İ, Braha NL, Tanahashi K. On $m$-quasi class $\mathcal{A}(k^{*})$ and absolute-$(k^{*},m)$-paranormal operators. Hacettepe Journal of Mathematics and Statistics. 2018;47(6):1564-77.