Research Article
BibTex RIS Cite

Improved oscillation results for second-order half-linear delay differential equations

Year 2019, Volume: 48 Issue: 1, 170 - 179, 01.02.2019

Abstract

 In  this paper,  we study the second-order half-linear delay differential equation of the form
\[(r(t)(y'(t))^\alpha)'+q(t)y^\alpha(\tau(t))= 0.\:\:\:(E)\]
We establish new oscillation criteria for (E), which   improve a number of related ones in the literature. Our approach  essentially involves  establishing sharper estimates for the positive solutions of (E) than those presented in known works and a comparison principle with first-order delay differential inequalities.   We illustrate the improvement over the known results by applying and comparing our method with the other known methods on the particular example of Euler-type equations.

References

  • R. P. Agarwal, M. Bohner and W.-T. Li, Nonoscillation and oscillation: theory for functional differential equations, Monographs and Textbooks in Pure and Applied Mathematics 267, Marcel Dekker, Inc., New York, 2004.
  • R. P. Agarwal, S. R. Grace and D. O’Regan, Oscillation theory for second order linear, half-linear, superlinear and sublinear dynamic equations, Kluwer Academic Publishers, Dordrecht, 2002.
  • R. P. Agarwal, S. R. Grace and D. O’Regan, Oscillation theory for second order dynamic equations, Series in Mathematical Analysis and Applications 5, Taylor & Francis, Ltd., London, 2003.
  • R. P. Agarwal, S. R. Grace and D. O’Regan, Oscillation theory for difference and functional differential equations, Springer Science & Business Media, 2013.
  • R. P. Agarwal, C. Zhang and T. Li, Some remarks on oscillation of second order neutral differential equations, Appl. Math. Comput. 274, 178–181, 2016.
  • O. Došlý and P. Rehák, Half-linear differential equations, North-Holland Mathematics Studies 202, Elsevier Science B.V., Amsterdam, 2005.
  • J. Džurina and I. Jadlovská, A note on oscillation of second-order delay differential equations, Appl. Math. Lett. 69, 126–132, 2017.
  • J. Džurina and I. P. Stavroulakis, Oscillation criteria for second-order delay differential equations, Appl. Math. Comput. 140 (2-3), 445–453, 2003.
  • L. Erbe, A. Peterson and S. H. Saker, Kamenev-type oscillation criteria for secondorder linear delay dynamic equations, Dynam. Systems Appl. 15 (1), 65–78, 2006.
  • S. Fišnarová and R. Marík, Oscillation of half-linear differential equations with delay, Abstr. Appl. Anal. 2013, Article ID: 583147, 1–6, 2013.
  • I. Gyori and G. Ladas, Oscillation theory of delay differential equations, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1991.
  • Z. Han, T. Li, S. Sun and Y. Sun, Remarks on the paper [Appl. Math. Comput. 207 (2009) 388–396] [mr2489110], Appl. Math. Comput. 215 (11), 3998–4007, 2010.
  • J. Jaroš and I. P. Stavroulakis, Oscillation tests for delay equations, Rocky Mountain J. Math. 29 (1), 197–207, 1999.
  • R. Koplatadze, G. Kvinikadze and I. P. Stavroulakis, Oscillation of second order linear delay differential equations, Funct. Differ. Equ. 7 (1-2), 121–145, 2000.
  • R. G. Koplatadze, Criteria for the oscillation of solutions of differential inequalities and second-order equations with retarded argument, Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy, 17, 104–121, 1986.
  • T. Kusano and J. Wang, Oscillation properties of half-linear functional-differential equations of the second order, Hiroshima Math. J. 25 (2), 371–385, 1995.
  • T. Li, Y. V. Rogovchenko and C. Zhang, Oscillation of second-order neutral differential equations, Funkcial. Ekvac. 56 (1), 111–120, 2013.
  • T. Li, Y. V. Rogovchenko and C. Zhang, Oscillation results for second-order nonlinear neutral differential equations, Adv. Difference Equ. 2013 (336), 1–13, 2013.
  • W. E. Mahfoud, Comparison theorems for delay differential equations, Pacific J. Math. 83 (1), 187–197, 1979.
  • Y. G. Sun and F. W. Meng, Note on the paper of Džurina and Stavroulakis: “Oscillation criteria for second-order delay differential equations” [Appl. Math. Comput. 140 (2003), no. 2-3, 445–453; mr1953915], Appl. Math. Comput. 174 (2), 1634–1641, 2006.
  • A. Tiryaki, Oscillation criteria for a certain second-order nonlinear differential equations with deviating arguments, Electron. J. Qual. Theory Differ. Equ. 2009 (61), 1–11, 2009.
  • J. J. Wei, Oscillation of second order delay differential equation, Ann. Differential Equations, 4 (4), 473–478, 1988.
  • H.Wu, L. Erbe and A. Peterson, Oscillation of solution to second-order half-linear delay dynamic equations on time scales, Electron. J. Differential Equations, 2016 (71), 1–15, 2016.
  • R. Xu and F. Meng, Some new oscillation criteria for second order quasi-linear neutral delay differential equations, Appl. Math. Comput. 182 (1), 797–803, 2006.
  • L. Ye and Z. Xu, Oscillation criteria for second order quasilinear neutral delay differential equations, Appl. Math. Comput. 207 (2), 388–396, 2009.
  • C. Zhang, R. P. Agarwal, M. Bohner and T. Li, Oscillation of second-order nonlinear neutral dynamic equations with noncanonical operators, Bull. Malays. Math. Sci. Soc. 38 (2), 761–778, 2015.
Year 2019, Volume: 48 Issue: 1, 170 - 179, 01.02.2019

Abstract

References

  • R. P. Agarwal, M. Bohner and W.-T. Li, Nonoscillation and oscillation: theory for functional differential equations, Monographs and Textbooks in Pure and Applied Mathematics 267, Marcel Dekker, Inc., New York, 2004.
  • R. P. Agarwal, S. R. Grace and D. O’Regan, Oscillation theory for second order linear, half-linear, superlinear and sublinear dynamic equations, Kluwer Academic Publishers, Dordrecht, 2002.
  • R. P. Agarwal, S. R. Grace and D. O’Regan, Oscillation theory for second order dynamic equations, Series in Mathematical Analysis and Applications 5, Taylor & Francis, Ltd., London, 2003.
  • R. P. Agarwal, S. R. Grace and D. O’Regan, Oscillation theory for difference and functional differential equations, Springer Science & Business Media, 2013.
  • R. P. Agarwal, C. Zhang and T. Li, Some remarks on oscillation of second order neutral differential equations, Appl. Math. Comput. 274, 178–181, 2016.
  • O. Došlý and P. Rehák, Half-linear differential equations, North-Holland Mathematics Studies 202, Elsevier Science B.V., Amsterdam, 2005.
  • J. Džurina and I. Jadlovská, A note on oscillation of second-order delay differential equations, Appl. Math. Lett. 69, 126–132, 2017.
  • J. Džurina and I. P. Stavroulakis, Oscillation criteria for second-order delay differential equations, Appl. Math. Comput. 140 (2-3), 445–453, 2003.
  • L. Erbe, A. Peterson and S. H. Saker, Kamenev-type oscillation criteria for secondorder linear delay dynamic equations, Dynam. Systems Appl. 15 (1), 65–78, 2006.
  • S. Fišnarová and R. Marík, Oscillation of half-linear differential equations with delay, Abstr. Appl. Anal. 2013, Article ID: 583147, 1–6, 2013.
  • I. Gyori and G. Ladas, Oscillation theory of delay differential equations, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1991.
  • Z. Han, T. Li, S. Sun and Y. Sun, Remarks on the paper [Appl. Math. Comput. 207 (2009) 388–396] [mr2489110], Appl. Math. Comput. 215 (11), 3998–4007, 2010.
  • J. Jaroš and I. P. Stavroulakis, Oscillation tests for delay equations, Rocky Mountain J. Math. 29 (1), 197–207, 1999.
  • R. Koplatadze, G. Kvinikadze and I. P. Stavroulakis, Oscillation of second order linear delay differential equations, Funct. Differ. Equ. 7 (1-2), 121–145, 2000.
  • R. G. Koplatadze, Criteria for the oscillation of solutions of differential inequalities and second-order equations with retarded argument, Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy, 17, 104–121, 1986.
  • T. Kusano and J. Wang, Oscillation properties of half-linear functional-differential equations of the second order, Hiroshima Math. J. 25 (2), 371–385, 1995.
  • T. Li, Y. V. Rogovchenko and C. Zhang, Oscillation of second-order neutral differential equations, Funkcial. Ekvac. 56 (1), 111–120, 2013.
  • T. Li, Y. V. Rogovchenko and C. Zhang, Oscillation results for second-order nonlinear neutral differential equations, Adv. Difference Equ. 2013 (336), 1–13, 2013.
  • W. E. Mahfoud, Comparison theorems for delay differential equations, Pacific J. Math. 83 (1), 187–197, 1979.
  • Y. G. Sun and F. W. Meng, Note on the paper of Džurina and Stavroulakis: “Oscillation criteria for second-order delay differential equations” [Appl. Math. Comput. 140 (2003), no. 2-3, 445–453; mr1953915], Appl. Math. Comput. 174 (2), 1634–1641, 2006.
  • A. Tiryaki, Oscillation criteria for a certain second-order nonlinear differential equations with deviating arguments, Electron. J. Qual. Theory Differ. Equ. 2009 (61), 1–11, 2009.
  • J. J. Wei, Oscillation of second order delay differential equation, Ann. Differential Equations, 4 (4), 473–478, 1988.
  • H.Wu, L. Erbe and A. Peterson, Oscillation of solution to second-order half-linear delay dynamic equations on time scales, Electron. J. Differential Equations, 2016 (71), 1–15, 2016.
  • R. Xu and F. Meng, Some new oscillation criteria for second order quasi-linear neutral delay differential equations, Appl. Math. Comput. 182 (1), 797–803, 2006.
  • L. Ye and Z. Xu, Oscillation criteria for second order quasilinear neutral delay differential equations, Appl. Math. Comput. 207 (2), 388–396, 2009.
  • C. Zhang, R. P. Agarwal, M. Bohner and T. Li, Oscillation of second-order nonlinear neutral dynamic equations with noncanonical operators, Bull. Malays. Math. Sci. Soc. 38 (2), 761–778, 2015.
There are 26 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

George E. Chatzarakis This is me

İrena Jadlovska

Publication Date February 1, 2019
Published in Issue Year 2019 Volume: 48 Issue: 1

Cite

APA Chatzarakis, G. E., & Jadlovska, İ. (2019). Improved oscillation results for second-order half-linear delay differential equations. Hacettepe Journal of Mathematics and Statistics, 48(1), 170-179.
AMA Chatzarakis GE, Jadlovska İ. Improved oscillation results for second-order half-linear delay differential equations. Hacettepe Journal of Mathematics and Statistics. February 2019;48(1):170-179.
Chicago Chatzarakis, George E., and İrena Jadlovska. “Improved Oscillation Results for Second-Order Half-Linear Delay Differential Equations”. Hacettepe Journal of Mathematics and Statistics 48, no. 1 (February 2019): 170-79.
EndNote Chatzarakis GE, Jadlovska İ (February 1, 2019) Improved oscillation results for second-order half-linear delay differential equations. Hacettepe Journal of Mathematics and Statistics 48 1 170–179.
IEEE G. E. Chatzarakis and İ. Jadlovska, “Improved oscillation results for second-order half-linear delay differential equations”, Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 1, pp. 170–179, 2019.
ISNAD Chatzarakis, George E. - Jadlovska, İrena. “Improved Oscillation Results for Second-Order Half-Linear Delay Differential Equations”. Hacettepe Journal of Mathematics and Statistics 48/1 (February 2019), 170-179.
JAMA Chatzarakis GE, Jadlovska İ. Improved oscillation results for second-order half-linear delay differential equations. Hacettepe Journal of Mathematics and Statistics. 2019;48:170–179.
MLA Chatzarakis, George E. and İrena Jadlovska. “Improved Oscillation Results for Second-Order Half-Linear Delay Differential Equations”. Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 1, 2019, pp. 170-9.
Vancouver Chatzarakis GE, Jadlovska İ. Improved oscillation results for second-order half-linear delay differential equations. Hacettepe Journal of Mathematics and Statistics. 2019;48(1):170-9.