Improved oscillation results for second-order half-linear delay differential equations
Year 2019,
Volume: 48 Issue: 1, 170 - 179, 01.02.2019
George E. Chatzarakis
İrena Jadlovska
Abstract
In this paper, we study the second-order half-linear delay differential equation of the form
\[(r(t)(y'(t))^\alpha)'+q(t)y^\alpha(\tau(t))= 0.\:\:\:(E)\]
We establish new oscillation criteria for (E), which improve a number of related ones in the literature. Our approach essentially involves establishing sharper estimates for the positive solutions of (E) than those presented in known works and a comparison principle with first-order delay differential inequalities. We illustrate the improvement over the known results by applying and comparing our method with the other known methods on the particular example of Euler-type equations.
References
- R. P. Agarwal, M. Bohner and W.-T. Li, Nonoscillation and oscillation: theory for
functional differential equations, Monographs and Textbooks in Pure and Applied
Mathematics 267, Marcel Dekker, Inc., New York, 2004.
- R. P. Agarwal, S. R. Grace and D. O’Regan, Oscillation theory for second order
linear, half-linear, superlinear and sublinear dynamic equations, Kluwer Academic
Publishers, Dordrecht, 2002.
- R. P. Agarwal, S. R. Grace and D. O’Regan, Oscillation theory for second order
dynamic equations, Series in Mathematical Analysis and Applications 5, Taylor &
Francis, Ltd., London, 2003.
- R. P. Agarwal, S. R. Grace and D. O’Regan, Oscillation theory for difference and
functional differential equations, Springer Science & Business Media, 2013.
- R. P. Agarwal, C. Zhang and T. Li, Some remarks on oscillation of second order
neutral differential equations, Appl. Math. Comput. 274, 178–181, 2016.
- O. Došlý and P. Rehák, Half-linear differential equations, North-Holland Mathematics
Studies 202, Elsevier Science B.V., Amsterdam, 2005.
- J. Džurina and I. Jadlovská, A note on oscillation of second-order delay differential
equations, Appl. Math. Lett. 69, 126–132, 2017.
- J. Džurina and I. P. Stavroulakis, Oscillation criteria for second-order delay differential
equations, Appl. Math. Comput. 140 (2-3), 445–453, 2003.
- L. Erbe, A. Peterson and S. H. Saker, Kamenev-type oscillation criteria for secondorder
linear delay dynamic equations, Dynam. Systems Appl. 15 (1), 65–78, 2006.
- S. Fišnarová and R. Marík, Oscillation of half-linear differential equations with delay,
Abstr. Appl. Anal. 2013, Article ID: 583147, 1–6, 2013.
- I. Gyori and G. Ladas, Oscillation theory of delay differential equations, Oxford
Mathematical Monographs, The Clarendon Press, Oxford University Press, New
York, 1991.
- Z. Han, T. Li, S. Sun and Y. Sun, Remarks on the paper [Appl. Math. Comput. 207
(2009) 388–396] [mr2489110], Appl. Math. Comput. 215 (11), 3998–4007, 2010.
- J. Jaroš and I. P. Stavroulakis, Oscillation tests for delay equations, Rocky Mountain
J. Math. 29 (1), 197–207, 1999.
- R. Koplatadze, G. Kvinikadze and I. P. Stavroulakis, Oscillation of second order
linear delay differential equations, Funct. Differ. Equ. 7 (1-2), 121–145, 2000.
- R. G. Koplatadze, Criteria for the oscillation of solutions of differential inequalities
and second-order equations with retarded argument, Tbiliss. Gos. Univ. Inst. Prikl.
Mat. Trudy, 17, 104–121, 1986.
- T. Kusano and J. Wang, Oscillation properties of half-linear functional-differential
equations of the second order, Hiroshima Math. J. 25 (2), 371–385, 1995.
- T. Li, Y. V. Rogovchenko and C. Zhang, Oscillation of second-order neutral differential
equations, Funkcial. Ekvac. 56 (1), 111–120, 2013.
- T. Li, Y. V. Rogovchenko and C. Zhang, Oscillation results for second-order nonlinear
neutral differential equations, Adv. Difference Equ. 2013 (336), 1–13, 2013.
- W. E. Mahfoud, Comparison theorems for delay differential equations, Pacific J. Math.
83 (1), 187–197, 1979.
- Y. G. Sun and F. W. Meng, Note on the paper of Džurina and Stavroulakis: “Oscillation
criteria for second-order delay differential equations” [Appl. Math. Comput. 140
(2003), no. 2-3, 445–453; mr1953915], Appl. Math. Comput. 174 (2), 1634–1641,
2006.
- A. Tiryaki, Oscillation criteria for a certain second-order nonlinear differential equations
with deviating arguments, Electron. J. Qual. Theory Differ. Equ. 2009 (61),
1–11, 2009.
- J. J. Wei, Oscillation of second order delay differential equation, Ann. Differential
Equations, 4 (4), 473–478, 1988.
- H.Wu, L. Erbe and A. Peterson, Oscillation of solution to second-order half-linear delay
dynamic equations on time scales, Electron. J. Differential Equations, 2016 (71),
1–15, 2016.
- R. Xu and F. Meng, Some new oscillation criteria for second order quasi-linear neutral
delay differential equations, Appl. Math. Comput. 182 (1), 797–803, 2006.
- L. Ye and Z. Xu, Oscillation criteria for second order quasilinear neutral delay differential
equations, Appl. Math. Comput. 207 (2), 388–396, 2009.
- C. Zhang, R. P. Agarwal, M. Bohner and T. Li, Oscillation of second-order nonlinear
neutral dynamic equations with noncanonical operators, Bull. Malays. Math. Sci. Soc.
38 (2), 761–778, 2015.
Year 2019,
Volume: 48 Issue: 1, 170 - 179, 01.02.2019
George E. Chatzarakis
İrena Jadlovska
References
- R. P. Agarwal, M. Bohner and W.-T. Li, Nonoscillation and oscillation: theory for
functional differential equations, Monographs and Textbooks in Pure and Applied
Mathematics 267, Marcel Dekker, Inc., New York, 2004.
- R. P. Agarwal, S. R. Grace and D. O’Regan, Oscillation theory for second order
linear, half-linear, superlinear and sublinear dynamic equations, Kluwer Academic
Publishers, Dordrecht, 2002.
- R. P. Agarwal, S. R. Grace and D. O’Regan, Oscillation theory for second order
dynamic equations, Series in Mathematical Analysis and Applications 5, Taylor &
Francis, Ltd., London, 2003.
- R. P. Agarwal, S. R. Grace and D. O’Regan, Oscillation theory for difference and
functional differential equations, Springer Science & Business Media, 2013.
- R. P. Agarwal, C. Zhang and T. Li, Some remarks on oscillation of second order
neutral differential equations, Appl. Math. Comput. 274, 178–181, 2016.
- O. Došlý and P. Rehák, Half-linear differential equations, North-Holland Mathematics
Studies 202, Elsevier Science B.V., Amsterdam, 2005.
- J. Džurina and I. Jadlovská, A note on oscillation of second-order delay differential
equations, Appl. Math. Lett. 69, 126–132, 2017.
- J. Džurina and I. P. Stavroulakis, Oscillation criteria for second-order delay differential
equations, Appl. Math. Comput. 140 (2-3), 445–453, 2003.
- L. Erbe, A. Peterson and S. H. Saker, Kamenev-type oscillation criteria for secondorder
linear delay dynamic equations, Dynam. Systems Appl. 15 (1), 65–78, 2006.
- S. Fišnarová and R. Marík, Oscillation of half-linear differential equations with delay,
Abstr. Appl. Anal. 2013, Article ID: 583147, 1–6, 2013.
- I. Gyori and G. Ladas, Oscillation theory of delay differential equations, Oxford
Mathematical Monographs, The Clarendon Press, Oxford University Press, New
York, 1991.
- Z. Han, T. Li, S. Sun and Y. Sun, Remarks on the paper [Appl. Math. Comput. 207
(2009) 388–396] [mr2489110], Appl. Math. Comput. 215 (11), 3998–4007, 2010.
- J. Jaroš and I. P. Stavroulakis, Oscillation tests for delay equations, Rocky Mountain
J. Math. 29 (1), 197–207, 1999.
- R. Koplatadze, G. Kvinikadze and I. P. Stavroulakis, Oscillation of second order
linear delay differential equations, Funct. Differ. Equ. 7 (1-2), 121–145, 2000.
- R. G. Koplatadze, Criteria for the oscillation of solutions of differential inequalities
and second-order equations with retarded argument, Tbiliss. Gos. Univ. Inst. Prikl.
Mat. Trudy, 17, 104–121, 1986.
- T. Kusano and J. Wang, Oscillation properties of half-linear functional-differential
equations of the second order, Hiroshima Math. J. 25 (2), 371–385, 1995.
- T. Li, Y. V. Rogovchenko and C. Zhang, Oscillation of second-order neutral differential
equations, Funkcial. Ekvac. 56 (1), 111–120, 2013.
- T. Li, Y. V. Rogovchenko and C. Zhang, Oscillation results for second-order nonlinear
neutral differential equations, Adv. Difference Equ. 2013 (336), 1–13, 2013.
- W. E. Mahfoud, Comparison theorems for delay differential equations, Pacific J. Math.
83 (1), 187–197, 1979.
- Y. G. Sun and F. W. Meng, Note on the paper of Džurina and Stavroulakis: “Oscillation
criteria for second-order delay differential equations” [Appl. Math. Comput. 140
(2003), no. 2-3, 445–453; mr1953915], Appl. Math. Comput. 174 (2), 1634–1641,
2006.
- A. Tiryaki, Oscillation criteria for a certain second-order nonlinear differential equations
with deviating arguments, Electron. J. Qual. Theory Differ. Equ. 2009 (61),
1–11, 2009.
- J. J. Wei, Oscillation of second order delay differential equation, Ann. Differential
Equations, 4 (4), 473–478, 1988.
- H.Wu, L. Erbe and A. Peterson, Oscillation of solution to second-order half-linear delay
dynamic equations on time scales, Electron. J. Differential Equations, 2016 (71),
1–15, 2016.
- R. Xu and F. Meng, Some new oscillation criteria for second order quasi-linear neutral
delay differential equations, Appl. Math. Comput. 182 (1), 797–803, 2006.
- L. Ye and Z. Xu, Oscillation criteria for second order quasilinear neutral delay differential
equations, Appl. Math. Comput. 207 (2), 388–396, 2009.
- C. Zhang, R. P. Agarwal, M. Bohner and T. Li, Oscillation of second-order nonlinear
neutral dynamic equations with noncanonical operators, Bull. Malays. Math. Sci. Soc.
38 (2), 761–778, 2015.