Research Article
BibTex RIS Cite
Year 2019, Volume: 48 Issue: 6, 1792 - 1807, 08.12.2019
https://doi.org/10.15672/HJMS.2018.638

Abstract

References

  • [1] C.E. Aull and W.J. Thron, Separation axioms between $T_0$ and $T_1$, Indag. Math. 24, 26–37, 1962.
  • [2] B. Banaschewski, Radical ideals and coherent frames, Comment. Math. Univ. Carolin. 37, 349–370, 1996.
  • [3] B. Banaschewski, Gelfand and exchange rings: their spectra in pointfree topology, Arab. J. Science and Engineering 25, 3–22, 2003.
  • [4] B. Banaschewski and A. Pultr, Variants of openness, Appl. Categ. Structures 2, 331–350, 1994.
  • [5] B. Banaschewski and A. Pultr, Pointfree aspects of the $T_D$ axiom of classical topology, Quaest. Math. 33, 369–385, 2010.
  • [6] T. Coquand and H. Lombardi, Hidden constructions in abstract algebra: Krull dimension of distributive lattices and commutative rings, in: Commutative ring theory and applications 477–499, Fez, 2001, Lecture Notes in Pure and Appl. Math., 231, Dekker, New York, 2003.
  • [7] D.E. Dobbs and M. Fontana, Classes of commutative rings characterized by Going-Up and Going-Down behavior, Rend. Sem. Mat. Univ. Padova 66, 113–127, 1982.
  • [8] D.E. Dobbs and I.J. Papick, Going down: a survey, Nieuw Arch. Wisk. 26, 255–291, 1978.
  • [9] M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 142, 43–60, 1969.
  • [10] P.T. Johnstone, Stone Spaces. Cambridge University Press, Cambridge, 1982.
  • [11] J. Martínez, Archimedean lattices, Algebra Universalis 3, 247–260, 1973.
  • [12] J. Martínez, Dimension in algebraic frames, Czechoslovak Math. J. 56, 437–474, 2006.
  • [13] J. Martínez, Unit and kernel systems in algebraic frames, Algebra Universalis 55, 13–43, 2006.
  • [14] J. Martínez, An innocent theorem of Banaschewski, applied to an unsuspecting theorem of De Marco, and the aftermath thereof, Forum Math. 23, 565–596, 2013.
  • [15] J. Martínez and E.R. Zenk, When an algebraic frame is regular, Algebra Universals 50, 231–257, 2003.
  • [16] S.B. Niefield and K.I. Rosenthal, Componental nuclei, in: Categorical algebra and its applications (Louvain-La-Neuve, 1987), 299–306, Lecture Notes in Math., 1348, Springer, Berlin, 1988.
  • [17] J. Picado and A. Pultr, Frames and Locales: topology without points, Frontiers in Mathematics, Springer, Basel, 2012.

First steps going down on algebraic frames

Year 2019, Volume: 48 Issue: 6, 1792 - 1807, 08.12.2019
https://doi.org/10.15672/HJMS.2018.638

Abstract

We extend the ring-theoretic concept of going down  to algebraic frames and coherent maps. We then use the notion introduced to characterize algebraic frames of dimension 0 and frames of dimension at most 1. An application to rings yields a characterization of von Neumann regular rings that appears to have hitherto been overlooked. Namely, a commutative ring $A$ with identity is von Neumann regular if and only if $Ann(I)+P=A$, for every prime ideal $P$ of $A$ and any finitely generated ideal $I$ of $A$ contained in $P$.

References

  • [1] C.E. Aull and W.J. Thron, Separation axioms between $T_0$ and $T_1$, Indag. Math. 24, 26–37, 1962.
  • [2] B. Banaschewski, Radical ideals and coherent frames, Comment. Math. Univ. Carolin. 37, 349–370, 1996.
  • [3] B. Banaschewski, Gelfand and exchange rings: their spectra in pointfree topology, Arab. J. Science and Engineering 25, 3–22, 2003.
  • [4] B. Banaschewski and A. Pultr, Variants of openness, Appl. Categ. Structures 2, 331–350, 1994.
  • [5] B. Banaschewski and A. Pultr, Pointfree aspects of the $T_D$ axiom of classical topology, Quaest. Math. 33, 369–385, 2010.
  • [6] T. Coquand and H. Lombardi, Hidden constructions in abstract algebra: Krull dimension of distributive lattices and commutative rings, in: Commutative ring theory and applications 477–499, Fez, 2001, Lecture Notes in Pure and Appl. Math., 231, Dekker, New York, 2003.
  • [7] D.E. Dobbs and M. Fontana, Classes of commutative rings characterized by Going-Up and Going-Down behavior, Rend. Sem. Mat. Univ. Padova 66, 113–127, 1982.
  • [8] D.E. Dobbs and I.J. Papick, Going down: a survey, Nieuw Arch. Wisk. 26, 255–291, 1978.
  • [9] M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 142, 43–60, 1969.
  • [10] P.T. Johnstone, Stone Spaces. Cambridge University Press, Cambridge, 1982.
  • [11] J. Martínez, Archimedean lattices, Algebra Universalis 3, 247–260, 1973.
  • [12] J. Martínez, Dimension in algebraic frames, Czechoslovak Math. J. 56, 437–474, 2006.
  • [13] J. Martínez, Unit and kernel systems in algebraic frames, Algebra Universalis 55, 13–43, 2006.
  • [14] J. Martínez, An innocent theorem of Banaschewski, applied to an unsuspecting theorem of De Marco, and the aftermath thereof, Forum Math. 23, 565–596, 2013.
  • [15] J. Martínez and E.R. Zenk, When an algebraic frame is regular, Algebra Universals 50, 231–257, 2003.
  • [16] S.B. Niefield and K.I. Rosenthal, Componental nuclei, in: Categorical algebra and its applications (Louvain-La-Neuve, 1987), 299–306, Lecture Notes in Math., 1348, Springer, Berlin, 1988.
  • [17] J. Picado and A. Pultr, Frames and Locales: topology without points, Frontiers in Mathematics, Springer, Basel, 2012.
There are 17 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Themba Dube 0000-0002-2702-2192

Publication Date December 8, 2019
Published in Issue Year 2019 Volume: 48 Issue: 6

Cite

APA Dube, T. (2019). First steps going down on algebraic frames. Hacettepe Journal of Mathematics and Statistics, 48(6), 1792-1807. https://doi.org/10.15672/HJMS.2018.638
AMA Dube T. First steps going down on algebraic frames. Hacettepe Journal of Mathematics and Statistics. December 2019;48(6):1792-1807. doi:10.15672/HJMS.2018.638
Chicago Dube, Themba. “First Steps Going down on Algebraic Frames”. Hacettepe Journal of Mathematics and Statistics 48, no. 6 (December 2019): 1792-1807. https://doi.org/10.15672/HJMS.2018.638.
EndNote Dube T (December 1, 2019) First steps going down on algebraic frames. Hacettepe Journal of Mathematics and Statistics 48 6 1792–1807.
IEEE T. Dube, “First steps going down on algebraic frames”, Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 6, pp. 1792–1807, 2019, doi: 10.15672/HJMS.2018.638.
ISNAD Dube, Themba. “First Steps Going down on Algebraic Frames”. Hacettepe Journal of Mathematics and Statistics 48/6 (December 2019), 1792-1807. https://doi.org/10.15672/HJMS.2018.638.
JAMA Dube T. First steps going down on algebraic frames. Hacettepe Journal of Mathematics and Statistics. 2019;48:1792–1807.
MLA Dube, Themba. “First Steps Going down on Algebraic Frames”. Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 6, 2019, pp. 1792-07, doi:10.15672/HJMS.2018.638.
Vancouver Dube T. First steps going down on algebraic frames. Hacettepe Journal of Mathematics and Statistics. 2019;48(6):1792-807.