Research Article
BibTex RIS Cite
Year 2020, Volume: 49 Issue: 1, 30 - 44, 06.02.2020
https://doi.org/10.15672/HJMS.2018.649

Abstract

References

  • [1] J.W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. Math. 17, 12–22, 1915.
  • [2] P.L. Duren, Theory of $H^p$ Spaces, Academic Press, New York, London, 1970.
  • [3] P.L. Duren, Univalent Functions, Springer Verlag, New York, 1983.
  • [4] A.W. Goodman, Univalent Functions, Mariner, Tampa, Florida, 1983.
  • [5] R.E. Greene and S.G. Kranz, Function Theory of One Complex Variable, AMS, Prov- idence, Rhode Island, 2006.
  • [6] F.R. Keogh and E.P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20, 8–12, 1969.
  • [7] J. Krzyż, Coefficient problem for non-vanishing functions, Ann. Polon. Math. 20, 314–316, 1968.
  • [8] A. Lecko, and B. Śmiarowska, Classes of analytic functions related to Blaschke prod- ucts, Filomat, 32 (18), 6289-6309, 2018.
  • [9] M.J. Martin, E.T. Sawyer, I. Uriarte-Tuero and D. Vukotić, The Krzyż conjecture revised, Adv. Math. 273, 716–745, 2015.
  • [10] R.R. Nevanlinna, Über die konforme Abbildung von Sterngebieten, Översikt av Finska Vetens.-Soc. Förh., Avd. A, LXIII (6), 1–21, 1920–1921,
  • [11] N. Samaris, A proof of Krzyż’s Conjecture for the Fifth Coefficient, Caomplex Vari- ables, Theory and Application, 48 (9), 753–766, 2003.

Subclasses of starlike functions related to Blaschke products

Year 2020, Volume: 49 Issue: 1, 30 - 44, 06.02.2020
https://doi.org/10.15672/HJMS.2018.649

Abstract

In this paper we examine subclasses of the class of starlike functions defined by the set of zeros of Schwarz functions. Distortion and the growth theorems are shown. Bounds of the classical coefficient functionals are also computed.

References

  • [1] J.W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. Math. 17, 12–22, 1915.
  • [2] P.L. Duren, Theory of $H^p$ Spaces, Academic Press, New York, London, 1970.
  • [3] P.L. Duren, Univalent Functions, Springer Verlag, New York, 1983.
  • [4] A.W. Goodman, Univalent Functions, Mariner, Tampa, Florida, 1983.
  • [5] R.E. Greene and S.G. Kranz, Function Theory of One Complex Variable, AMS, Prov- idence, Rhode Island, 2006.
  • [6] F.R. Keogh and E.P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20, 8–12, 1969.
  • [7] J. Krzyż, Coefficient problem for non-vanishing functions, Ann. Polon. Math. 20, 314–316, 1968.
  • [8] A. Lecko, and B. Śmiarowska, Classes of analytic functions related to Blaschke prod- ucts, Filomat, 32 (18), 6289-6309, 2018.
  • [9] M.J. Martin, E.T. Sawyer, I. Uriarte-Tuero and D. Vukotić, The Krzyż conjecture revised, Adv. Math. 273, 716–745, 2015.
  • [10] R.R. Nevanlinna, Über die konforme Abbildung von Sterngebieten, Översikt av Finska Vetens.-Soc. Förh., Avd. A, LXIII (6), 1–21, 1920–1921,
  • [11] N. Samaris, A proof of Krzyż’s Conjecture for the Fifth Coefficient, Caomplex Vari- ables, Theory and Application, 48 (9), 753–766, 2003.
There are 11 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Adam Lecko 0000-0002-0185-9402

Barbara Smiarowska This is me 0000-0001-6357-793X

Publication Date February 6, 2020
Published in Issue Year 2020 Volume: 49 Issue: 1

Cite

APA Lecko, A., & Smiarowska, B. (2020). Subclasses of starlike functions related to Blaschke products. Hacettepe Journal of Mathematics and Statistics, 49(1), 30-44. https://doi.org/10.15672/HJMS.2018.649
AMA Lecko A, Smiarowska B. Subclasses of starlike functions related to Blaschke products. Hacettepe Journal of Mathematics and Statistics. February 2020;49(1):30-44. doi:10.15672/HJMS.2018.649
Chicago Lecko, Adam, and Barbara Smiarowska. “Subclasses of Starlike Functions Related to Blaschke Products”. Hacettepe Journal of Mathematics and Statistics 49, no. 1 (February 2020): 30-44. https://doi.org/10.15672/HJMS.2018.649.
EndNote Lecko A, Smiarowska B (February 1, 2020) Subclasses of starlike functions related to Blaschke products. Hacettepe Journal of Mathematics and Statistics 49 1 30–44.
IEEE A. Lecko and B. Smiarowska, “Subclasses of starlike functions related to Blaschke products”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 1, pp. 30–44, 2020, doi: 10.15672/HJMS.2018.649.
ISNAD Lecko, Adam - Smiarowska, Barbara. “Subclasses of Starlike Functions Related to Blaschke Products”. Hacettepe Journal of Mathematics and Statistics 49/1 (February 2020), 30-44. https://doi.org/10.15672/HJMS.2018.649.
JAMA Lecko A, Smiarowska B. Subclasses of starlike functions related to Blaschke products. Hacettepe Journal of Mathematics and Statistics. 2020;49:30–44.
MLA Lecko, Adam and Barbara Smiarowska. “Subclasses of Starlike Functions Related to Blaschke Products”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 1, 2020, pp. 30-44, doi:10.15672/HJMS.2018.649.
Vancouver Lecko A, Smiarowska B. Subclasses of starlike functions related to Blaschke products. Hacettepe Journal of Mathematics and Statistics. 2020;49(1):30-44.