Year 2020,
Volume: 49 Issue: 1, 30 - 44, 06.02.2020
Adam Lecko
,
Barbara Smiarowska
References
- [1] J.W. Alexander, Functions which map the interior of the unit circle upon simple
regions, Ann. Math. 17, 12–22, 1915.
- [2] P.L. Duren, Theory of $H^p$ Spaces, Academic Press, New York, London, 1970.
- [3] P.L. Duren, Univalent Functions, Springer Verlag, New York, 1983.
- [4] A.W. Goodman, Univalent Functions, Mariner, Tampa, Florida, 1983.
- [5] R.E. Greene and S.G. Kranz, Function Theory of One Complex Variable, AMS, Prov-
idence, Rhode Island, 2006.
- [6] F.R. Keogh and E.P. Merkes, A coefficient inequality for certain classes of analytic
functions, Proc. Amer. Math. Soc. 20, 8–12, 1969.
- [7] J. Krzyż, Coefficient problem for non-vanishing functions, Ann. Polon. Math. 20,
314–316, 1968.
- [8] A. Lecko, and B. Śmiarowska, Classes of analytic functions related to Blaschke prod-
ucts, Filomat, 32 (18), 6289-6309, 2018.
- [9] M.J. Martin, E.T. Sawyer, I. Uriarte-Tuero and D. Vukotić, The Krzyż conjecture
revised, Adv. Math. 273, 716–745, 2015.
- [10] R.R. Nevanlinna, Über die konforme Abbildung von Sterngebieten, Översikt av Finska
Vetens.-Soc. Förh., Avd. A, LXIII (6), 1–21, 1920–1921,
- [11] N. Samaris, A proof of Krzyż’s Conjecture for the Fifth Coefficient, Caomplex Vari-
ables, Theory and Application, 48 (9), 753–766, 2003.
Subclasses of starlike functions related to Blaschke products
Year 2020,
Volume: 49 Issue: 1, 30 - 44, 06.02.2020
Adam Lecko
,
Barbara Smiarowska
Abstract
In this paper we examine subclasses of the class of starlike functions defined by the set of zeros of Schwarz functions. Distortion and the growth theorems are shown. Bounds of the classical coefficient functionals are also computed.
References
- [1] J.W. Alexander, Functions which map the interior of the unit circle upon simple
regions, Ann. Math. 17, 12–22, 1915.
- [2] P.L. Duren, Theory of $H^p$ Spaces, Academic Press, New York, London, 1970.
- [3] P.L. Duren, Univalent Functions, Springer Verlag, New York, 1983.
- [4] A.W. Goodman, Univalent Functions, Mariner, Tampa, Florida, 1983.
- [5] R.E. Greene and S.G. Kranz, Function Theory of One Complex Variable, AMS, Prov-
idence, Rhode Island, 2006.
- [6] F.R. Keogh and E.P. Merkes, A coefficient inequality for certain classes of analytic
functions, Proc. Amer. Math. Soc. 20, 8–12, 1969.
- [7] J. Krzyż, Coefficient problem for non-vanishing functions, Ann. Polon. Math. 20,
314–316, 1968.
- [8] A. Lecko, and B. Śmiarowska, Classes of analytic functions related to Blaschke prod-
ucts, Filomat, 32 (18), 6289-6309, 2018.
- [9] M.J. Martin, E.T. Sawyer, I. Uriarte-Tuero and D. Vukotić, The Krzyż conjecture
revised, Adv. Math. 273, 716–745, 2015.
- [10] R.R. Nevanlinna, Über die konforme Abbildung von Sterngebieten, Översikt av Finska
Vetens.-Soc. Förh., Avd. A, LXIII (6), 1–21, 1920–1921,
- [11] N. Samaris, A proof of Krzyż’s Conjecture for the Fifth Coefficient, Caomplex Vari-
ables, Theory and Application, 48 (9), 753–766, 2003.