Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 49 Sayı: 1, 30 - 44, 06.02.2020
https://doi.org/10.15672/HJMS.2018.649

Öz

Kaynakça

  • [1] J.W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. Math. 17, 12–22, 1915.
  • [2] P.L. Duren, Theory of $H^p$ Spaces, Academic Press, New York, London, 1970.
  • [3] P.L. Duren, Univalent Functions, Springer Verlag, New York, 1983.
  • [4] A.W. Goodman, Univalent Functions, Mariner, Tampa, Florida, 1983.
  • [5] R.E. Greene and S.G. Kranz, Function Theory of One Complex Variable, AMS, Prov- idence, Rhode Island, 2006.
  • [6] F.R. Keogh and E.P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20, 8–12, 1969.
  • [7] J. Krzyż, Coefficient problem for non-vanishing functions, Ann. Polon. Math. 20, 314–316, 1968.
  • [8] A. Lecko, and B. Śmiarowska, Classes of analytic functions related to Blaschke prod- ucts, Filomat, 32 (18), 6289-6309, 2018.
  • [9] M.J. Martin, E.T. Sawyer, I. Uriarte-Tuero and D. Vukotić, The Krzyż conjecture revised, Adv. Math. 273, 716–745, 2015.
  • [10] R.R. Nevanlinna, Über die konforme Abbildung von Sterngebieten, Översikt av Finska Vetens.-Soc. Förh., Avd. A, LXIII (6), 1–21, 1920–1921,
  • [11] N. Samaris, A proof of Krzyż’s Conjecture for the Fifth Coefficient, Caomplex Vari- ables, Theory and Application, 48 (9), 753–766, 2003.

Subclasses of starlike functions related to Blaschke products

Yıl 2020, Cilt: 49 Sayı: 1, 30 - 44, 06.02.2020
https://doi.org/10.15672/HJMS.2018.649

Öz

In this paper we examine subclasses of the class of starlike functions defined by the set of zeros of Schwarz functions. Distortion and the growth theorems are shown. Bounds of the classical coefficient functionals are also computed.

Kaynakça

  • [1] J.W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. Math. 17, 12–22, 1915.
  • [2] P.L. Duren, Theory of $H^p$ Spaces, Academic Press, New York, London, 1970.
  • [3] P.L. Duren, Univalent Functions, Springer Verlag, New York, 1983.
  • [4] A.W. Goodman, Univalent Functions, Mariner, Tampa, Florida, 1983.
  • [5] R.E. Greene and S.G. Kranz, Function Theory of One Complex Variable, AMS, Prov- idence, Rhode Island, 2006.
  • [6] F.R. Keogh and E.P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20, 8–12, 1969.
  • [7] J. Krzyż, Coefficient problem for non-vanishing functions, Ann. Polon. Math. 20, 314–316, 1968.
  • [8] A. Lecko, and B. Śmiarowska, Classes of analytic functions related to Blaschke prod- ucts, Filomat, 32 (18), 6289-6309, 2018.
  • [9] M.J. Martin, E.T. Sawyer, I. Uriarte-Tuero and D. Vukotić, The Krzyż conjecture revised, Adv. Math. 273, 716–745, 2015.
  • [10] R.R. Nevanlinna, Über die konforme Abbildung von Sterngebieten, Översikt av Finska Vetens.-Soc. Förh., Avd. A, LXIII (6), 1–21, 1920–1921,
  • [11] N. Samaris, A proof of Krzyż’s Conjecture for the Fifth Coefficient, Caomplex Vari- ables, Theory and Application, 48 (9), 753–766, 2003.
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Matematik
Yazarlar

Adam Lecko 0000-0002-0185-9402

Barbara Smiarowska Bu kişi benim 0000-0001-6357-793X

Yayımlanma Tarihi 6 Şubat 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 49 Sayı: 1

Kaynak Göster

APA Lecko, A., & Smiarowska, B. (2020). Subclasses of starlike functions related to Blaschke products. Hacettepe Journal of Mathematics and Statistics, 49(1), 30-44. https://doi.org/10.15672/HJMS.2018.649
AMA Lecko A, Smiarowska B. Subclasses of starlike functions related to Blaschke products. Hacettepe Journal of Mathematics and Statistics. Şubat 2020;49(1):30-44. doi:10.15672/HJMS.2018.649
Chicago Lecko, Adam, ve Barbara Smiarowska. “Subclasses of Starlike Functions Related to Blaschke Products”. Hacettepe Journal of Mathematics and Statistics 49, sy. 1 (Şubat 2020): 30-44. https://doi.org/10.15672/HJMS.2018.649.
EndNote Lecko A, Smiarowska B (01 Şubat 2020) Subclasses of starlike functions related to Blaschke products. Hacettepe Journal of Mathematics and Statistics 49 1 30–44.
IEEE A. Lecko ve B. Smiarowska, “Subclasses of starlike functions related to Blaschke products”, Hacettepe Journal of Mathematics and Statistics, c. 49, sy. 1, ss. 30–44, 2020, doi: 10.15672/HJMS.2018.649.
ISNAD Lecko, Adam - Smiarowska, Barbara. “Subclasses of Starlike Functions Related to Blaschke Products”. Hacettepe Journal of Mathematics and Statistics 49/1 (Şubat 2020), 30-44. https://doi.org/10.15672/HJMS.2018.649.
JAMA Lecko A, Smiarowska B. Subclasses of starlike functions related to Blaschke products. Hacettepe Journal of Mathematics and Statistics. 2020;49:30–44.
MLA Lecko, Adam ve Barbara Smiarowska. “Subclasses of Starlike Functions Related to Blaschke Products”. Hacettepe Journal of Mathematics and Statistics, c. 49, sy. 1, 2020, ss. 30-44, doi:10.15672/HJMS.2018.649.
Vancouver Lecko A, Smiarowska B. Subclasses of starlike functions related to Blaschke products. Hacettepe Journal of Mathematics and Statistics. 2020;49(1):30-44.