Yıl 2020, Cilt 49 , Sayı 2, Sayfalar 784 - 792 2020-04-02

In this paper, we extend the $LPI$ property (that is, every locally principal ideal in an integral domain is invertible) to rings with zero-divisors and we study the class of commutative rings in which every regular locally principal ideal is invertible called $LPI$ rings. We investigate the stability of this property under homomorphic image, and its transfer to various contexts of constructions such as direct products, amalgamation of rings and trivial ring extensions. Our results generate examples which enrich the current literature with new and original families of rings that satisfy this property.
Locally principal ideals, regular ideals, trivial extension, pullback, amalgamation of rings, LPI-rings
  • [1] M.M. Ali, Idealization and Theorems of D.D. Anderson, Comm. Algebra 34, 4479- 4501, 2006.
  • [2] M.M. Ali, Idealization and Theorems of D.D. Anderson II, Comm. Algebra 35, 2767- 2792, 2007.
  • [3] D.D. Anderson and A. Mimouni, LPI domains and Pullbacks, Comm. Algebra 42, 2759-2768, 2014.
  • [4] D.D. Anderson and M. Roitman, A characterization of cancellation ideals, Proc. Amer. Math. Soc. 125, 2853-2854, 1997.
  • [5] D.D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra 1 (1), 3-56, 2009.
  • [6] D.D. Anderson and M. Zafrullah, Integral domains in which nonzero locally principal ideals are invertible, Comm. Algebra 39, 933-941, 2011.
  • [7] C. Bakkari, S. Kabbaj and N. Mahdou, Trivial extension definided by Prûfer conditions, J. Pure App. Algebra 214, 53-60, 2014.
  • [8] S. Bazzoni, Class semigroups of Prüfer domains, J. Algebra 184, 613-631, 1996.
  • [9] M. D’Anna, C.A. Finocchiaro and M. Fontana, Amalgamated algebra along an ideal, Commmutative Algebra and Applications, Walter De Gruyter, 155-172, 2009.
  • [10] M. D’Anna, C.A. Finocchiaro and M. Fontana, Properties of chains of prime ideals in amalgamated algebras along an ideal, J. Pure Appl. Algebra 214, 1633-1641, 2010.
  • [11] M. D’Anna, C.A. Finocchiaro and M. Fontana, New algebraic properties of an amalgamated algebra along an ideal, Comm. Algebra 44, 1836-1851, 2016.
  • [12] M. D’Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl. 6, 443-459, 2007.
  • [13] S. Glaz, Commutative coherent rings, Springer-Verlag, Lecture Notes in Mathematics, 13-71, 1989.
  • [14] S. Glaz and W. Vasconcelos, Flat ideals II, Manuscripta Math. 22 (4), 325-341, 1977.
  • [15] F. Halter-Koch, Clifford semigroups of ideals in monoids and domains, Forum Math. 21, 1001-1020, 2009.
  • [16] W.C. Holland, J. Martinez, W.Wm. McGovern and M. Tesemma, Bazzoni’s Conjecture, J. Algebra 320, 1764-1768, 2008.
  • [17] K. Hu, F.G. Wang and H. Chen, A note on LPI domains, Bull. Korean Math. Soc. 50 (3), 719-725, 2013.
  • [18] J.A. Huckaba, Commutative rings with zero divisors, Marcel Dekker, New York- Basel,1988.
  • [19] K. Louartiti and N. Mahdou, Transfer of multiplication-like conditions in amalgamated algebra along an ideal, Afr. Diaspora J. Math. 14 (1), 119-125, 2012.
  • [20] G. Picozza and F. Tartarone, Flat ideals and stability in integral domains, J. Algebra 324, 1790-1802, 2010.
  • [21] J. Sally and W. Vasconcelos, Flat ideals I, Comm. Algebra 3 531-543, 1975.
  • [22] S. Xing and F.G. Wang, Two questions on domains in which locally principal ideals are invertible. J. Algebra Appl. 16 (6), 1750112, 8 pp, 2017.
Birincil Dil en
Konular Matematik
Bölüm Matematik
Yazarlar

Orcid: 0000-0003-0830-0481
Yazar: Rachida EL KHALFAOUİ
Kurum: University S.M. Ben Abdellah
Ülke: Morocco


Orcid: 0000-0001-6353-1114
Yazar: Najib MAHDOU
Kurum: University S.M. Ben Abdellah
Ülke: Morocco


Orcid: 0000-0001-5865-2683
Yazar: Abdeslam MİMOUNİ
Kurum: King Fahd University of Petroleum & Minerals
Ülke: Saudi Arabia


Tarihler

Yayımlanma Tarihi : 2 Nisan 2020

Bibtex @araştırma makalesi { hujms456426, journal = {Hacettepe Journal of Mathematics and Statistics}, issn = {2651-477X}, eissn = {2651-477X}, address = {}, publisher = {Hacettepe Üniversitesi}, year = {2020}, volume = {49}, pages = {784 - 792}, doi = {10.15672/hujms.456426}, title = {On LPI rings}, key = {cite}, author = {EL KHALFAOUİ, Rachida and MAHDOU, Najib and MİMOUNİ, Abdeslam} }
APA EL KHALFAOUİ, R , MAHDOU, N , MİMOUNİ, A . (2020). On LPI rings. Hacettepe Journal of Mathematics and Statistics , 49 (2) , 784-792 . DOI: 10.15672/hujms.456426
MLA EL KHALFAOUİ, R , MAHDOU, N , MİMOUNİ, A . "On LPI rings". Hacettepe Journal of Mathematics and Statistics 49 (2020 ): 784-792 <https://dergipark.org.tr/tr/pub/hujms/issue/53568/456426>
Chicago EL KHALFAOUİ, R , MAHDOU, N , MİMOUNİ, A . "On LPI rings". Hacettepe Journal of Mathematics and Statistics 49 (2020 ): 784-792
RIS TY - JOUR T1 - On LPI rings AU - Rachida EL KHALFAOUİ , Najib MAHDOU , Abdeslam MİMOUNİ Y1 - 2020 PY - 2020 N1 - doi: 10.15672/hujms.456426 DO - 10.15672/hujms.456426 T2 - Hacettepe Journal of Mathematics and Statistics JF - Journal JO - JOR SP - 784 EP - 792 VL - 49 IS - 2 SN - 2651-477X-2651-477X M3 - doi: 10.15672/hujms.456426 UR - https://doi.org/10.15672/hujms.456426 Y2 - 2019 ER -
EndNote %0 Hacettepe Journal of Mathematics and Statistics On LPI rings %A Rachida EL KHALFAOUİ , Najib MAHDOU , Abdeslam MİMOUNİ %T On LPI rings %D 2020 %J Hacettepe Journal of Mathematics and Statistics %P 2651-477X-2651-477X %V 49 %N 2 %R doi: 10.15672/hujms.456426 %U 10.15672/hujms.456426
ISNAD EL KHALFAOUİ, Rachida , MAHDOU, Najib , MİMOUNİ, Abdeslam . "On LPI rings". Hacettepe Journal of Mathematics and Statistics 49 / 2 (Nisan 2020): 784-792 . https://doi.org/10.15672/hujms.456426
AMA EL KHALFAOUİ R , MAHDOU N , MİMOUNİ A . On LPI rings. Hacettepe Journal of Mathematics and Statistics. 2020; 49(2): 784-792.
Vancouver EL KHALFAOUİ R , MAHDOU N , MİMOUNİ A . On LPI rings. Hacettepe Journal of Mathematics and Statistics. 2020; 49(2): 792-784.