Yıl 2020, Cilt 49 , Sayı 2, Sayfalar 539 - 552 2020-04-02

The Laguerre pseudospectral method for the two-dimensional Schrödinger equation with symmetric nonseparable potentials

Haydar ALICI [1]


The Hermite pseudospectral method is one of the natural techniques for the numerical treatment of the problems defined over unbounded domains such as two-dimensional time-independent Schrödinger equation on the whole real plane. However, it is shown here that for the symmetric potentials, transformation of the problem over the first quadrant and the application of the Laguerre pseudospectral method reduce the cost by a factor of four when compared to the Hermite pseudospectral method.

The Laguerre pseudospectral method, two dimensional Schrödinger equation, symmetric potentials
  • [1] H. Alıcı, The Hermite pseudospectral method for the two-dimensional Schrödinger equation with nonseparable potentials, Comput. Math. Appl. 69 (6), 466–477, 2015.
  • [2] H. Alıcı and H. Taşeli, Pseudospectral methods for an equation of hypergeometric type with a perturbation, J. Comput. Appl. Math. 234, 1140–1152, 2010.
  • [3] M. Demiralp, N.A. Baykara, and H. Taşeli, A basis set comparison in a variational scheme for Yukawa potential, J. Math. Chem. 11, 311–323, 1992.
  • [4] G.H. Golub and J.H. Welsch, Calculation of Gauss quadrature rules, Math. Comput. 23, 221–230 s1–s10, 1969.
  • [5] B.-Y. Guo, L.-L. Wang, and Z.-Q. Wang, Generalized Laguerre interpolation and pseudospectral method for unbounded domains, SIAM J. Numer. Anal. 43, 2567–2589, 2006.
  • [6] F.B. Hildebrand, Method of Applied Mathematics, McGraw-Hill, NewYork, 1956, pp. 319–323.
  • [7] G. Mastroianni and D. Occorsio, Lagrange interpolation at Laguerre zeros in some weighted uniform spaces, Acta Math. Hungar. 91 (1-2), 27–52, 2001.
  • [8] J. Shen, Stable and efficient spectral methods in unbounded domains using Laguerre functions, SIAM J. Numer. Anal. 38 (4), 1113–1133, 2000.
  • [9] J. Shen and L.-L. Wang, Some recent advances on spectral methods for unbounded domains, Commun. Comput. Phys. 5, 195–241, 2009.
  • [10] T. Tang, The Hermite spectral method for Gaussian-type functions, SIAM J. Sci. Comput. 14 (3), 594–606, 1993.
  • [11] H. Taşeli, Modified Laguerre basis for hydrogen-like systems, Int. J. Quantum Chem. 63, 949–959, 1997.
  • [12] H. Taşeli and H. Alıcı, The Laguerre pseudospectral method for the reflection sym- metric Hamiltonians on the real line, J. Math. Chem. 41, 407–416, 2007.
  • [13] H. Taşeli and R. Eid, Eigenvalues of the two-dimensional Schrödinger equation with nonseparable potentials, Int. J. Quantum Chem. 59, 183–201, 1996.
  • [14] J.A.C. Weideman and L.N. Trefethen, Eigenvalues of second-order spectral differen- tiation matrices, SIAM J. Numer. Anal. 25, 1279–1298, 1988.
Birincil Dil en
Konular Matematik
Bölüm Matematik
Yazarlar

Orcid: 0000-0003-3835-8043
Yazar: Haydar ALICI (Sorumlu Yazar)
Kurum: HARRAN UNIVERSITY
Ülke: Turkey


Tarihler

Yayımlanma Tarihi : 2 Nisan 2020

Bibtex @araştırma makalesi { hujms459593, journal = {Hacettepe Journal of Mathematics and Statistics}, issn = {2651-477X}, eissn = {2651-477X}, address = {}, publisher = {Hacettepe Üniversitesi}, year = {2020}, volume = {49}, pages = {539 - 552}, doi = {10.15672/hujms.459593}, title = {The Laguerre pseudospectral method for the two-dimensional Schrödinger equation with symmetric nonseparable potentials}, key = {cite}, author = {ALICI, Haydar} }
APA ALICI, H . (2020). The Laguerre pseudospectral method for the two-dimensional Schrödinger equation with symmetric nonseparable potentials. Hacettepe Journal of Mathematics and Statistics , 49 (2) , 539-552 . DOI: 10.15672/hujms.459593
MLA ALICI, H . "The Laguerre pseudospectral method for the two-dimensional Schrödinger equation with symmetric nonseparable potentials". Hacettepe Journal of Mathematics and Statistics 49 (2020 ): 539-552 <https://dergipark.org.tr/tr/pub/hujms/issue/53568/459593>
Chicago ALICI, H . "The Laguerre pseudospectral method for the two-dimensional Schrödinger equation with symmetric nonseparable potentials". Hacettepe Journal of Mathematics and Statistics 49 (2020 ): 539-552
RIS TY - JOUR T1 - The Laguerre pseudospectral method for the two-dimensional Schrödinger equation with symmetric nonseparable potentials AU - Haydar ALICI Y1 - 2020 PY - 2020 N1 - doi: 10.15672/hujms.459593 DO - 10.15672/hujms.459593 T2 - Hacettepe Journal of Mathematics and Statistics JF - Journal JO - JOR SP - 539 EP - 552 VL - 49 IS - 2 SN - 2651-477X-2651-477X M3 - doi: 10.15672/hujms.459593 UR - https://doi.org/10.15672/hujms.459593 Y2 - 2019 ER -
EndNote %0 Hacettepe Journal of Mathematics and Statistics The Laguerre pseudospectral method for the two-dimensional Schrödinger equation with symmetric nonseparable potentials %A Haydar ALICI %T The Laguerre pseudospectral method for the two-dimensional Schrödinger equation with symmetric nonseparable potentials %D 2020 %J Hacettepe Journal of Mathematics and Statistics %P 2651-477X-2651-477X %V 49 %N 2 %R doi: 10.15672/hujms.459593 %U 10.15672/hujms.459593
ISNAD ALICI, Haydar . "The Laguerre pseudospectral method for the two-dimensional Schrödinger equation with symmetric nonseparable potentials". Hacettepe Journal of Mathematics and Statistics 49 / 2 (Nisan 2020): 539-552 . https://doi.org/10.15672/hujms.459593
AMA ALICI H . The Laguerre pseudospectral method for the two-dimensional Schrödinger equation with symmetric nonseparable potentials. Hacettepe Journal of Mathematics and Statistics. 2020; 49(2): 539-552.
Vancouver ALICI H . The Laguerre pseudospectral method for the two-dimensional Schrödinger equation with symmetric nonseparable potentials. Hacettepe Journal of Mathematics and Statistics. 2020; 49(2): 552-539.