Research Article
BibTex RIS Cite
Year 2020, Volume: 49 Issue: 3, 950 - 961, 02.06.2020
https://doi.org/10.15672/hujms.624046

Abstract

References

  • [1] M.F. Ali, N.M. Khan and A. Mahboob, Relative ideals in ordered semigroups, sub- mitted for publication.
  • [2] N.G. Alimov, On ordered semigroups, Izvestiya Akad. Nauk SSSR. 14, 569–576, 1950.
  • [3] A.H. Clifford, Totally ordered commutative semigroups, Bull. Amer. Math. Soc. 64, 305–316, 1958.
  • [4] A.H. Clifford and G.B. Preston, The algebraic theory of semigroups. Vol. I., Mathe- matical Surveys, No. 7, American Mathematical Society, Providence, R.I., 1961.
  • [5] L. Fuchs, Partially ordered algebraic systems, Pergamon Press, 113–115, 1963.
  • [6] R.A. Good and D.R. Hughes, Associative groups for a semigroup, Bull. Amer. Math. Soc. 58, 79–81, 1958.
  • [7] Y.V. Hion, Ordered semigroups, Izvestiya Akad. Nauk SSSR. 21, 209–222, 1957.
  • [8] N. Kehayopulu, On weakly prime ideals of ordered semigroups, Math. Japonica, 35( 6), 1051–1056, 1990.
  • [9] N. Kehayopulu, On prime, weakly prime ideals in ordered semigrous, Semigroup Fo- rum, 44, 341–346, 1992.
  • [10] N. Kehayopulu, On Regular duo ordered semigroups, Math. Japonica, 37, 535–540, 1992.
  • [11] N. Kehayopulu, S. Lajos and M. Singelis, On intra-regular ordered semigroups, PU. M. A. 4, 317–327, 1993.
  • [12] S. Lajos and G. Szasz, On characterizations of certain classes of semigroups, Publ. Math. Debecen, 25, 225–227, 1978.
  • [13] S. Lajos, Bi-ideals in semigroups I, A survey PU. M. A. Ser. A, 2, 3–4, 1991.
  • [14] D.M. Lee and S.K. Lee, On Intra-regular Ordered Semigroups, Kangweon-Kyungki Math. Jour. 14 (1), 95–100, 2006.
  • [15] H.J. le Roux, A note on Prime and Semiprime Bi-ideals of Rings, Kyungpook Math. J. 35, 243–247, 1995.
  • [16] Renáta Hrmová, Relative ideals in semigroups, Matematický Casopis, 17 (3), 206– 223, 1967.
  • [17] R. Saritha, Prime and Semiprime Bi-ideals in Ordered Semigroups, Int. J. Algebra, 7 (17), 839–845, 2013.
  • [18] O. Steinfeld, On quotients and prime ideals, Acta. Math. Acad. Sci. Hung. 4, 289–298, 1953.
  • [19] O. Steinfeld, Quasi ideals in Rings and Semigroups, Akademiaikiado, Budapest, 1978.
  • [20] G. Szász, Eine Charakteristik der Primidealhalbgruppen, Publ. Math. Debrecen, 17, 209–213, 1970.
  • [21] A.P.J. van der Walt, Prime and Semiprime Bi-ideals, Quaest. Math. 5, 341–345, 1983.
  • [22] A.D. Wallace, Relative ideals in semigroups I, Colloq. Math. 9, 55–61, 1962.

Relative bi-ideals and relative quasi ideals in ordered semigroups

Year 2020, Volume: 49 Issue: 3, 950 - 961, 02.06.2020
https://doi.org/10.15672/hujms.624046

Abstract

In this paper, after introducing the notion of relative bi-ideals and relative quasi ideals in ordered semigroups, some important properties of these bi-ideals and quasi ideals are studied. Then relatively prime and relatively weakly semiprime bi-ideals are defined and some vital results have been proved. We also define relative regularity and relative intra-regularity of an ordered semigroup and prove some results based on the connection among intra-regularity of an ordered semigroup, relative quasi and relative bi-ideals of that ordered semigroup. Finally some important results connecting relative regularity, relatively prime bi-ideals and relatively weakly semiprime bi-ideals of an ordered semigroup have also been obtained.

References

  • [1] M.F. Ali, N.M. Khan and A. Mahboob, Relative ideals in ordered semigroups, sub- mitted for publication.
  • [2] N.G. Alimov, On ordered semigroups, Izvestiya Akad. Nauk SSSR. 14, 569–576, 1950.
  • [3] A.H. Clifford, Totally ordered commutative semigroups, Bull. Amer. Math. Soc. 64, 305–316, 1958.
  • [4] A.H. Clifford and G.B. Preston, The algebraic theory of semigroups. Vol. I., Mathe- matical Surveys, No. 7, American Mathematical Society, Providence, R.I., 1961.
  • [5] L. Fuchs, Partially ordered algebraic systems, Pergamon Press, 113–115, 1963.
  • [6] R.A. Good and D.R. Hughes, Associative groups for a semigroup, Bull. Amer. Math. Soc. 58, 79–81, 1958.
  • [7] Y.V. Hion, Ordered semigroups, Izvestiya Akad. Nauk SSSR. 21, 209–222, 1957.
  • [8] N. Kehayopulu, On weakly prime ideals of ordered semigroups, Math. Japonica, 35( 6), 1051–1056, 1990.
  • [9] N. Kehayopulu, On prime, weakly prime ideals in ordered semigrous, Semigroup Fo- rum, 44, 341–346, 1992.
  • [10] N. Kehayopulu, On Regular duo ordered semigroups, Math. Japonica, 37, 535–540, 1992.
  • [11] N. Kehayopulu, S. Lajos and M. Singelis, On intra-regular ordered semigroups, PU. M. A. 4, 317–327, 1993.
  • [12] S. Lajos and G. Szasz, On characterizations of certain classes of semigroups, Publ. Math. Debecen, 25, 225–227, 1978.
  • [13] S. Lajos, Bi-ideals in semigroups I, A survey PU. M. A. Ser. A, 2, 3–4, 1991.
  • [14] D.M. Lee and S.K. Lee, On Intra-regular Ordered Semigroups, Kangweon-Kyungki Math. Jour. 14 (1), 95–100, 2006.
  • [15] H.J. le Roux, A note on Prime and Semiprime Bi-ideals of Rings, Kyungpook Math. J. 35, 243–247, 1995.
  • [16] Renáta Hrmová, Relative ideals in semigroups, Matematický Casopis, 17 (3), 206– 223, 1967.
  • [17] R. Saritha, Prime and Semiprime Bi-ideals in Ordered Semigroups, Int. J. Algebra, 7 (17), 839–845, 2013.
  • [18] O. Steinfeld, On quotients and prime ideals, Acta. Math. Acad. Sci. Hung. 4, 289–298, 1953.
  • [19] O. Steinfeld, Quasi ideals in Rings and Semigroups, Akademiaikiado, Budapest, 1978.
  • [20] G. Szász, Eine Charakteristik der Primidealhalbgruppen, Publ. Math. Debrecen, 17, 209–213, 1970.
  • [21] A.P.J. van der Walt, Prime and Semiprime Bi-ideals, Quaest. Math. 5, 341–345, 1983.
  • [22] A.D. Wallace, Relative ideals in semigroups I, Colloq. Math. 9, 55–61, 1962.
There are 22 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Noor Mohammad Khan This is me 0000-0002-8360-5851

Md. Firoj Ali This is me 0000-0002-6426-8968

Publication Date June 2, 2020
Published in Issue Year 2020 Volume: 49 Issue: 3

Cite

APA Khan, N. M., & Ali, M. F. (2020). Relative bi-ideals and relative quasi ideals in ordered semigroups. Hacettepe Journal of Mathematics and Statistics, 49(3), 950-961. https://doi.org/10.15672/hujms.624046
AMA Khan NM, Ali MF. Relative bi-ideals and relative quasi ideals in ordered semigroups. Hacettepe Journal of Mathematics and Statistics. June 2020;49(3):950-961. doi:10.15672/hujms.624046
Chicago Khan, Noor Mohammad, and Md. Firoj Ali. “Relative Bi-Ideals and Relative Quasi Ideals in Ordered Semigroups”. Hacettepe Journal of Mathematics and Statistics 49, no. 3 (June 2020): 950-61. https://doi.org/10.15672/hujms.624046.
EndNote Khan NM, Ali MF (June 1, 2020) Relative bi-ideals and relative quasi ideals in ordered semigroups. Hacettepe Journal of Mathematics and Statistics 49 3 950–961.
IEEE N. M. Khan and M. F. Ali, “Relative bi-ideals and relative quasi ideals in ordered semigroups”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 3, pp. 950–961, 2020, doi: 10.15672/hujms.624046.
ISNAD Khan, Noor Mohammad - Ali, Md. Firoj. “Relative Bi-Ideals and Relative Quasi Ideals in Ordered Semigroups”. Hacettepe Journal of Mathematics and Statistics 49/3 (June 2020), 950-961. https://doi.org/10.15672/hujms.624046.
JAMA Khan NM, Ali MF. Relative bi-ideals and relative quasi ideals in ordered semigroups. Hacettepe Journal of Mathematics and Statistics. 2020;49:950–961.
MLA Khan, Noor Mohammad and Md. Firoj Ali. “Relative Bi-Ideals and Relative Quasi Ideals in Ordered Semigroups”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 3, 2020, pp. 950-61, doi:10.15672/hujms.624046.
Vancouver Khan NM, Ali MF. Relative bi-ideals and relative quasi ideals in ordered semigroups. Hacettepe Journal of Mathematics and Statistics. 2020;49(3):950-61.