Research Article
BibTex RIS Cite

Approximation by $\alpha$-Bernstein-Schurer operator

Year 2021, Volume: 50 Issue: 3, 732 - 743, 07.06.2021
https://doi.org/10.15672/hujms.626905

Abstract

In this paper, we introduce a new family of generalized Bernstein-Schurer operators and investigate some approximation properties of these operators. We obtain a uniform approximation result using the well-known Korovkin theorem and give the degree of approximation via second modulus of smoothness. Also, we present Voronovskaya and Grüss-Voronovskaya type results for these operators.

References

  • [1] T. Acar and A. Kajla, Degree of approximation for bivariate generalized Bernstein type operators, Results Math. 73 Article number: 79, 2018.
  • [2] T. Acar, A.M. Acu and N. Manav, Approximation of functions by genuine Bernstein- Durrmeyer type operators, J. Math. Inequal. 12 (4), 975–987, 2018.
  • [3] A.M. Acu, H. Gonska and I. Raşa, Grüss-type and Ostrowski-type inequalities in approximation theory, Ukrainian Math. J. 63 (6), 843–864, 2011.
  • [4] A. Aral and H. Erbay, Parametric generalization of Baskakov operators, Math. Com- mun. 24, 119–131, 2019.
  • [5] F. Altomare and M. Campiti, Korovkin-type Approximation Theory and its Applica- tions, Walter de Gruyter, Berlin-New York, 1994.
  • [6] S.N. Bernstein, Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités, Commun. Kharkov Math. Soc. 13, 1–2, 1912/1913.
  • [7] Q. Cai and X. Xu, Shape-preserving properties of a new family of generalized Bern- stein operators, J. Inequal. Appl. 2018, Article number: 241, 2018.
  • [8] D. Cárdenas-Morales, P. Garrancho and I. Raşa, Bernstein-type operators which pre- serve polynomials, Comput. Math. Appl. 62 (1), 158–163, 2011.
  • [9] X. Chen, J. Tan and Z. Liu, Approximation of functions by a new family of generalized Bernstein operators, J. Math. Anal. Appl. 450, 244–261, 2017.
  • [10] N. Çetin, Approximation and geometric properties of complex -Bernstein operator, Results Math. 74, Article number: 40, 2019.
  • [11] N. Çetin and V.A. Radu, Approximation by generalized Bernstein-Stancu operators, Turkish J. Math. 43, 2032–2048, 2019.
  • [12] R.A. DeVore and G.G. Lorentz, Constructive Approximation, Springer, Berlin, 1993.
  • [13] J.L. Durrmeyer, Une formule d’inversion de la transformée de Laplace-Applications à la théorie des moments, Thèse de 3e cycle, Faculté des Sciences, Université de Paris, 1967.
  • [14] S.G. Gal and H. Gonska, Grüss and Grüss-Voronovskaya-type estimates for some Bernstein-type polynomials of real and complex variables, Jaen J. Approx. 7 (1), 97– 122, 2015.
  • [15] H. Gonska and G. Tachev, Grüss-type inequalities for positive linear operators with second order moduli, Mat. Vesnik, 63 (4), 247–252, 2011.
  • [16] G. Grüss, Uber das maximum des absoluten betrages von $\frac{1}{b-a}\int\limits_{a}^{b}f\left( x\right) g\left( x\right) dx-\frac{1}{\left( b-a\right) ^{2}}\int\limits_{a}^{b}f\left( x\right)dx\int\limits_{a}^{b}g\left( x\right) dx,$, Math. Z. 39, 215–226, 1935.
  • [17] A. Kajla and D. Miclăuş, Blending Type Approximation by GBS Operators of Gener- alized Bernstein–Durrmeyer Type, Results Math. 73 Article number: 1, 2018.
  • [18] L.V. Kantorovich, Sur certains développements suivant les polynômes de la forme de S. Bernstein, I, II, C.R.Acad.URSS, 563–568, 595–600, 1930.
  • [19] A. Lupaş, A q-analogue of the Bernstein operator, Seminar on Numerical and Statis- tical Calculus, Babeş-Bolyai University, 9, 85–92, 1987.
  • [20] S.A. Mohiuddine, T. Acar and A. Alotaibi, Construction of a new family of Bernstein- Kantorovich operators, Math. Methods Appl. Sci. 40, 7749–7759, 2017.
  • [21] F. Schurer, Linear positive operators in approximation theory, Math. Inst. Techn. Univ. Delft Report, 1962.
  • [22] D.D. Stancu, Asupra unei generalizări a polinoamelor lui Bernstein, Studia Universi- tatis Babeş-Bolyai, Ser. Math.-Phys. 14 (2), 31–45, 1969 (in Romanian).
  • [23] D.D. Stancu, Approximation of functions by means of a new generalized Bernstein operator, Calcolo, 20 (2), 211–229, 1983.
  • [24] J. Szabados, On a quasi-interpolating Bernstein operator, J. Approx. Theory, 196, 1–12, 2015.
  • [25] E. Voronovskaja, Détermination de la forme asymptotique d’approximation des fonc- tions parles polynômes de S. Bernstein, Dokl. Akad. Nauk SSSR, 79–85, 1932.
Year 2021, Volume: 50 Issue: 3, 732 - 743, 07.06.2021
https://doi.org/10.15672/hujms.626905

Abstract

References

  • [1] T. Acar and A. Kajla, Degree of approximation for bivariate generalized Bernstein type operators, Results Math. 73 Article number: 79, 2018.
  • [2] T. Acar, A.M. Acu and N. Manav, Approximation of functions by genuine Bernstein- Durrmeyer type operators, J. Math. Inequal. 12 (4), 975–987, 2018.
  • [3] A.M. Acu, H. Gonska and I. Raşa, Grüss-type and Ostrowski-type inequalities in approximation theory, Ukrainian Math. J. 63 (6), 843–864, 2011.
  • [4] A. Aral and H. Erbay, Parametric generalization of Baskakov operators, Math. Com- mun. 24, 119–131, 2019.
  • [5] F. Altomare and M. Campiti, Korovkin-type Approximation Theory and its Applica- tions, Walter de Gruyter, Berlin-New York, 1994.
  • [6] S.N. Bernstein, Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités, Commun. Kharkov Math. Soc. 13, 1–2, 1912/1913.
  • [7] Q. Cai and X. Xu, Shape-preserving properties of a new family of generalized Bern- stein operators, J. Inequal. Appl. 2018, Article number: 241, 2018.
  • [8] D. Cárdenas-Morales, P. Garrancho and I. Raşa, Bernstein-type operators which pre- serve polynomials, Comput. Math. Appl. 62 (1), 158–163, 2011.
  • [9] X. Chen, J. Tan and Z. Liu, Approximation of functions by a new family of generalized Bernstein operators, J. Math. Anal. Appl. 450, 244–261, 2017.
  • [10] N. Çetin, Approximation and geometric properties of complex -Bernstein operator, Results Math. 74, Article number: 40, 2019.
  • [11] N. Çetin and V.A. Radu, Approximation by generalized Bernstein-Stancu operators, Turkish J. Math. 43, 2032–2048, 2019.
  • [12] R.A. DeVore and G.G. Lorentz, Constructive Approximation, Springer, Berlin, 1993.
  • [13] J.L. Durrmeyer, Une formule d’inversion de la transformée de Laplace-Applications à la théorie des moments, Thèse de 3e cycle, Faculté des Sciences, Université de Paris, 1967.
  • [14] S.G. Gal and H. Gonska, Grüss and Grüss-Voronovskaya-type estimates for some Bernstein-type polynomials of real and complex variables, Jaen J. Approx. 7 (1), 97– 122, 2015.
  • [15] H. Gonska and G. Tachev, Grüss-type inequalities for positive linear operators with second order moduli, Mat. Vesnik, 63 (4), 247–252, 2011.
  • [16] G. Grüss, Uber das maximum des absoluten betrages von $\frac{1}{b-a}\int\limits_{a}^{b}f\left( x\right) g\left( x\right) dx-\frac{1}{\left( b-a\right) ^{2}}\int\limits_{a}^{b}f\left( x\right)dx\int\limits_{a}^{b}g\left( x\right) dx,$, Math. Z. 39, 215–226, 1935.
  • [17] A. Kajla and D. Miclăuş, Blending Type Approximation by GBS Operators of Gener- alized Bernstein–Durrmeyer Type, Results Math. 73 Article number: 1, 2018.
  • [18] L.V. Kantorovich, Sur certains développements suivant les polynômes de la forme de S. Bernstein, I, II, C.R.Acad.URSS, 563–568, 595–600, 1930.
  • [19] A. Lupaş, A q-analogue of the Bernstein operator, Seminar on Numerical and Statis- tical Calculus, Babeş-Bolyai University, 9, 85–92, 1987.
  • [20] S.A. Mohiuddine, T. Acar and A. Alotaibi, Construction of a new family of Bernstein- Kantorovich operators, Math. Methods Appl. Sci. 40, 7749–7759, 2017.
  • [21] F. Schurer, Linear positive operators in approximation theory, Math. Inst. Techn. Univ. Delft Report, 1962.
  • [22] D.D. Stancu, Asupra unei generalizări a polinoamelor lui Bernstein, Studia Universi- tatis Babeş-Bolyai, Ser. Math.-Phys. 14 (2), 31–45, 1969 (in Romanian).
  • [23] D.D. Stancu, Approximation of functions by means of a new generalized Bernstein operator, Calcolo, 20 (2), 211–229, 1983.
  • [24] J. Szabados, On a quasi-interpolating Bernstein operator, J. Approx. Theory, 196, 1–12, 2015.
  • [25] E. Voronovskaja, Détermination de la forme asymptotique d’approximation des fonc- tions parles polynômes de S. Bernstein, Dokl. Akad. Nauk SSSR, 79–85, 1932.
There are 25 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Nursel Çetin 0000-0003-3771-6523

Publication Date June 7, 2021
Published in Issue Year 2021 Volume: 50 Issue: 3

Cite

APA Çetin, N. (2021). Approximation by $\alpha$-Bernstein-Schurer operator. Hacettepe Journal of Mathematics and Statistics, 50(3), 732-743. https://doi.org/10.15672/hujms.626905
AMA Çetin N. Approximation by $\alpha$-Bernstein-Schurer operator. Hacettepe Journal of Mathematics and Statistics. June 2021;50(3):732-743. doi:10.15672/hujms.626905
Chicago Çetin, Nursel. “Approximation by $\alpha$-Bernstein-Schurer Operator”. Hacettepe Journal of Mathematics and Statistics 50, no. 3 (June 2021): 732-43. https://doi.org/10.15672/hujms.626905.
EndNote Çetin N (June 1, 2021) Approximation by $\alpha$-Bernstein-Schurer operator. Hacettepe Journal of Mathematics and Statistics 50 3 732–743.
IEEE N. Çetin, “Approximation by $\alpha$-Bernstein-Schurer operator”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 3, pp. 732–743, 2021, doi: 10.15672/hujms.626905.
ISNAD Çetin, Nursel. “Approximation by $\alpha$-Bernstein-Schurer Operator”. Hacettepe Journal of Mathematics and Statistics 50/3 (June 2021), 732-743. https://doi.org/10.15672/hujms.626905.
JAMA Çetin N. Approximation by $\alpha$-Bernstein-Schurer operator. Hacettepe Journal of Mathematics and Statistics. 2021;50:732–743.
MLA Çetin, Nursel. “Approximation by $\alpha$-Bernstein-Schurer Operator”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 3, 2021, pp. 732-43, doi:10.15672/hujms.626905.
Vancouver Çetin N. Approximation by $\alpha$-Bernstein-Schurer operator. Hacettepe Journal of Mathematics and Statistics. 2021;50(3):732-43.