In this paper, we investigate suborbital graphs $G_{u,n}$ of the normalizer $\Gamma_B(N)$ of $\Gamma_0(N)$ in $PSL(2,\mathbb{R})$ for $N= 2^\alpha 3^\beta$, where $\alpha=0,2,4,6$ and $\beta =1,3$. In each of these cases, the normalizer becomes a triangle group and the graph arising from the action of the normalizer contains hexagonal circuits. In order to obtain graphs, we first define an imprimitive action of $\Gamma _B(N)$ on $\widehat{\mathbb{Q}}$ using the group $H_B(N)$ and then we obtain some properties of the graphs arising from this action.
Primary Language | English |
---|---|
Subjects | Mathematical Sciences |
Journal Section | Mathematics |
Authors | |
Publication Date | June 1, 2022 |
Published in Issue | Year 2022 Volume: 51 Issue: 3 |