Research Article
BibTex RIS Cite
Year 2022, Volume: 51 Issue: 3, 737 - 742, 01.06.2022
https://doi.org/10.15672/hujms.914884

Abstract

References

  • [1] L. Arnold, On the asymptotic distribution of the eigenvalues of random matrices, J. Math. Anal. Appl. 20, 262-268, 1967.
  • [2] T. Chadjipantelis, S. Kounias and C. Moyssiadis, The maximum determinant of $21\times21$ $(+ 1,-1)$-matrices and D-optimal designs, J. Statist. Plan. Inference, 16, 167-178, 1987.
  • [3] U. Grenander, Probability on algebraic structures, Wiley, New York, 1963.
  • [4] J.H. Koolen and V. Moulton, Maximal energy graphs, Adv. Appl. Math. 26, 47-52, 2001.
  • [5] N. Nguyen and A.J. Miller, A review of some exchange algorithms for constructing discrete D-optimal designs, Comput. Stat. Data Anal. 14, 489-498, 1992.
  • [6] V. Nikiforov, The energy of graphs and matrices, J. Math. Anal. Appl. 326, 1472- 1475, 2007.
  • [7] V. Nikiforov, Extremal norms of graphs and matrices, J. Math. Sci. 182, 164-174, 2012.
  • [8] V. Nikiforov, Beyond graph energy: Norms of graphs and matrices, Linear Algebra Appl. 506, 82-138, 2016.
  • [9] R. Sitter and B. Torsney, Optimal designs for binary response experiments with two design variables, Statist. Sinica, 5, 405-419, 1995.
  • [10] E. Wigner, On the distribution of the roots of certain symmetric matrices, Ann. of Math. (2) 67, 325-327, 1958.

Extended Schatten norms of random graphs and Nikiforov conjecture

Year 2022, Volume: 51 Issue: 3, 737 - 742, 01.06.2022
https://doi.org/10.15672/hujms.914884

Abstract

In this paper we give mean of $p$-th degree of singular values and upper bound of geometric mean for almost all graphs. We prove three theorems about a conjecture of V. Nikiforov for Schatten $p$-norm of graphs when $p>2$. We prove that the conjecture is true when $p$ is an even integer or when graph is a tree or a strongly regular graph with certain parameters. The strongly regular graphs with these parameters are graphs with maximal energy.

References

  • [1] L. Arnold, On the asymptotic distribution of the eigenvalues of random matrices, J. Math. Anal. Appl. 20, 262-268, 1967.
  • [2] T. Chadjipantelis, S. Kounias and C. Moyssiadis, The maximum determinant of $21\times21$ $(+ 1,-1)$-matrices and D-optimal designs, J. Statist. Plan. Inference, 16, 167-178, 1987.
  • [3] U. Grenander, Probability on algebraic structures, Wiley, New York, 1963.
  • [4] J.H. Koolen and V. Moulton, Maximal energy graphs, Adv. Appl. Math. 26, 47-52, 2001.
  • [5] N. Nguyen and A.J. Miller, A review of some exchange algorithms for constructing discrete D-optimal designs, Comput. Stat. Data Anal. 14, 489-498, 1992.
  • [6] V. Nikiforov, The energy of graphs and matrices, J. Math. Anal. Appl. 326, 1472- 1475, 2007.
  • [7] V. Nikiforov, Extremal norms of graphs and matrices, J. Math. Sci. 182, 164-174, 2012.
  • [8] V. Nikiforov, Beyond graph energy: Norms of graphs and matrices, Linear Algebra Appl. 506, 82-138, 2016.
  • [9] R. Sitter and B. Torsney, Optimal designs for binary response experiments with two design variables, Statist. Sinica, 5, 405-419, 1995.
  • [10] E. Wigner, On the distribution of the roots of certain symmetric matrices, Ann. of Math. (2) 67, 325-327, 1958.
There are 10 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Ivan Lazarevic 0000-0003-2934-9938

Publication Date June 1, 2022
Published in Issue Year 2022 Volume: 51 Issue: 3

Cite

APA Lazarevic, I. (2022). Extended Schatten norms of random graphs and Nikiforov conjecture. Hacettepe Journal of Mathematics and Statistics, 51(3), 737-742. https://doi.org/10.15672/hujms.914884
AMA Lazarevic I. Extended Schatten norms of random graphs and Nikiforov conjecture. Hacettepe Journal of Mathematics and Statistics. June 2022;51(3):737-742. doi:10.15672/hujms.914884
Chicago Lazarevic, Ivan. “Extended Schatten Norms of Random Graphs and Nikiforov Conjecture”. Hacettepe Journal of Mathematics and Statistics 51, no. 3 (June 2022): 737-42. https://doi.org/10.15672/hujms.914884.
EndNote Lazarevic I (June 1, 2022) Extended Schatten norms of random graphs and Nikiforov conjecture. Hacettepe Journal of Mathematics and Statistics 51 3 737–742.
IEEE I. Lazarevic, “Extended Schatten norms of random graphs and Nikiforov conjecture”, Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 3, pp. 737–742, 2022, doi: 10.15672/hujms.914884.
ISNAD Lazarevic, Ivan. “Extended Schatten Norms of Random Graphs and Nikiforov Conjecture”. Hacettepe Journal of Mathematics and Statistics 51/3 (June 2022), 737-742. https://doi.org/10.15672/hujms.914884.
JAMA Lazarevic I. Extended Schatten norms of random graphs and Nikiforov conjecture. Hacettepe Journal of Mathematics and Statistics. 2022;51:737–742.
MLA Lazarevic, Ivan. “Extended Schatten Norms of Random Graphs and Nikiforov Conjecture”. Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 3, 2022, pp. 737-42, doi:10.15672/hujms.914884.
Vancouver Lazarevic I. Extended Schatten norms of random graphs and Nikiforov conjecture. Hacettepe Journal of Mathematics and Statistics. 2022;51(3):737-42.