[1] M. Ahsanullah and V.B. Nevzorov, Records via Probability Theory, Atlantis Press,
2015.
[2] F.G. Akgul, B. Senoglu and S. Acıtas, Interval estimation of the system reliability for
Weibull distribution based on ranked set sampling data, Hacet. J. Math. Stat. 47 (5),
1404–1416, 2018.
[3] A. Asgharzadeh, R. Valiollahi and M.Z. Raqab, Estimation of $Pr(Y<X)$ for the
two-parameter generalized exponential records, Commun. Stat. - Simul. Comput. 46
(1), 379-394, 2017.
[4] A. Asgharzadeh, M. Abdi and C. Kuş, Interval estimation for the two-parameter pareto
distribution based on record values, Selcuk J. Appl. Math. 149-161, 2011.
[5] A. Asgharzadeh and A. Fallah, Estimation and prediction for exponentiated family of
distributions based on records, Commun. Stat. - Theory Methods 40 (1), 68-83, 2010.
[6] A. Asgharzadeh, On Bayesian estimation from exponential distribution based on
records, J Korean Stat Soc. 38 (2), 125-130, 2009.
[7] N. Akdam, I. Kınacı and B. Saracoglu, Statistical inference of stress-strength reliability
for the exponential power distribution based on progressive type-II censored samples,
Hacet. J. Math. Stat. 46 (2), 239-253, 2017.
[8] B.C. Arnold, N. Balakrishnan and H.N. Nagaraja, Records, John Wiley and Sons, New
York, 1998.
[9] A. Baklizi, Interval estimation of the stress-strength reliability in the two-parameter
exponential distribution based on records, J Stat Comput Simul. 84 (12), 2670-2679,
2014.
[10] A. Baklizi, Estimation of $Pr(X<Y)$ using record values in the one and two parameter
exponential distributions, Commun. Stat. - Theory Methods 37 (5), 692-698, 2008.
[11] G.D.C. Barriga, F. Louzada and V.G. Cancho, The complementary exponential power
lifetime model, Comput Stat Data Anal 55 (3) 250-1259, 2011.
[12] K.N. Chandler, The distribution and frequency of record values, J. Roy. Stat. Soc. B.
14 (2), 220-228, 1952.
[13] Z. Chen, Statistical inference about the shape parameter of the exponential power
distribution, Stat Pap 40, 459-468, 1999.
[14] M.J. Crowder, Tests for a Family of Survival Models Based on Extremes, Recent
Advances in Reliability Theory, Boston, MA: Birkhauser, 307-321, 2000.
[15] D. Demiray and F. Kızılaslan, Stressstrength reliability estimation of a consecutive
k-out-of-n system based on proportional hazard rate family, J Stat Comput Simul. 99
(1), 159-190, 2022.
[16] B. Efron, The Jackknife, The Bootstrap and Other Resampling Plans, Philadelphia:
Society for industrial and applied mathematics, 1982.
[17] G. Gencer and B. Saracoglu, Comparison of approximate Bayes estimators under
different loss functions for parameters of Odd Weibull distribution, Journal of Selcuk
University Natural and Applied Science, 5 (1), 18-32, 2016.
[18] H.A. Howloader and A.M. Hossain, Bayesian survival estimation of Pareto distribution
of second kind based on failure-censored data, Comput Stat Data Anal 38 ,
301-314, 2002.
[19] M. Jovanović, B. Milošević and M. Obradović, Estimation of stress-strength probability
in a multicomponent model based on geometric distribution, Hacet. J. Math. Stat.
49 (4), 1515–1532, 2020.
[20] İ. Kınacı, S.J. Wu and C. Kus, Confidence intervals and regions for the generalized
inverted exponential distribution based on Progressively Censored and upper records
data, Revstat Stat. J. 17 (4), 429-448, 2019.
[21] İ. Kınacı, K. Karakaya, Y. Akdoğan amd C. Ku, Kesikli Chen Dağılımı için Bayes
tahmini, Selcuk Üniversitesi Fen Fakültesi Fen Dergisi, 42 (2), 144-148, 2016.
[22] S. Kotz, Y. Lumelskii and M. Pensky, Stress-Strength Model and its Generalizations,
World Scientific, River Edge, NJ, USA, 2003.
[23] F. Kızılaslan and M. Nadar, Statistical inference of $ P (X< Y) $ for the Burr Type XII
distribution based on records, Hacet. J. Math. Stat. 46 (4), 713-742, 2017.
[24] J.F. Lawless, Statistical Models and Methods for Lifetime Data, 2nd Edition, Hoboken,
NJ: John Wiley, 2003.
[25] L.M. Leemis, Lifetime distribution identities, IEEE Trans Reliab 35, 170-174, 1986.
[26] D.J. Luckett, Statistical Inference Based on Upper Record Values, College of William
and Mary Undergraduate Honors Theses, Paper 577, 2013.
[27] M.A. Mousa and Z.F. Jaheen, Statistical inference for the Burr model based on progressively
censored data, Comput. Math. with Appl. 43 (10), 1441-1449, 2002.
[28] M. Nadar and F. Kızılaslan, Classical and Bayesian estimation of P(X < Y ) using
upper record values from Kumaraswamy’s distribution, Stat Pap 55 (3), 751-783, 2014.
[29] M. Obradović, M. Jovanović, B. Milosević and V. Jevremović, Estimation of P(X <
Y ) for geometric-Poisson model, Hacet. J. Math. Stat. 44 (4), 949–964, 2015.
[30] M.B. Rajarshi and S. Rajarshi, Bathtub distribution: A review, Commun. Stat. -
Theory Methods 17, 2597-2621, 1988.
[31] R.M. Smith and L.J. Bain, An exponential power life-testing distribution, Commun.
Stat. 4 (5), 469-481, 1975.
[32] C. Tanış, B. Saraçoğlu, C. Kus and A. Pekgor, Transmuted complementary exponential
power distribution: properties and applications, Cumhuriyet Science Journal 41 (2),
419-432, 2020.
[33] C. Tanış, M. Cokbarlı and B. Saraçoğlu, Approximate Bayes estimation for Log-
Dagum distribution, Cumhuriyet Science Journal 40 (2), 477-486, 2019.
[34] C. Tanış and B. Saraçoğlu, Comparisons of six different estimation methods for log-
Kumaraswamy distribution, Therm. Sci. 23 (6), 1839-1847, 2019.
[35] C. Tanış and B. Saraçoğlu, Statistical inference based on upper record values for the
transmuted Weibull distribution, Int. J. Math. Stat. Invent. 5 (9), 18-23, 2017.
[36] B. Tarvirdizade and G.H. Kazemzadeh, Inference on Pr(X > Y ) Based on record
values from the Burr Type X distribution, Hacet. J. Math. Stat. 45 (1), 267-278, 2016.
[37] B. Tarvirdizade and M. Ahmadpour, Estimation of the stressstrength reliability for
the two-parameter bathtub-shaped lifetime distribution based on upper record values,
Stat. Methodol. 31, 58-72, 2016.
[38] L. Tierney and J.B. Kadane, Accurate approximations for posterior moments and
marginal densities, J Am Stat Assoc. 81 (393), 82-86, 1986.
[39] Z. Vidović, On MLEs of the parameters of a modified Weibull distribution based on
record values, J. Appl. Stat. 46 (4), 715-724, 2019.
[40] T. Zhi, Maximum Likelihood Estimation of Parameters in Exponential Power Distribution
with Upper Record Values, Florida International University FIU Digital Commons,
Theses, 2017.
Estimation of $Pr(X<Y)$ for exponential power records
Year 2023,
Volume: 52 Issue: 2, 499 - 511, 31.03.2023
In this study, we tackle the problem of estimation of stress-strength reliability $R = P r(X < Y )$ based on upper record values for exponential power distribution. We use the maximum likelihood and Bayes methods to estimate R. The Tierney-Kadane approximation is used to compute the Bayes estimation of R since the Bayes estimator can not be obtained analytically. We also derive asymptotic confidence interval based on the asymptotic distribution of the maximum likelihood estimator of R. We consider a Monte Carlo simulation study in order to compare the performances of the maximum likelihood estimators and Bayes estimators according to mean square error criteria. Finally, a real data application is presented.
[1] M. Ahsanullah and V.B. Nevzorov, Records via Probability Theory, Atlantis Press,
2015.
[2] F.G. Akgul, B. Senoglu and S. Acıtas, Interval estimation of the system reliability for
Weibull distribution based on ranked set sampling data, Hacet. J. Math. Stat. 47 (5),
1404–1416, 2018.
[3] A. Asgharzadeh, R. Valiollahi and M.Z. Raqab, Estimation of $Pr(Y<X)$ for the
two-parameter generalized exponential records, Commun. Stat. - Simul. Comput. 46
(1), 379-394, 2017.
[4] A. Asgharzadeh, M. Abdi and C. Kuş, Interval estimation for the two-parameter pareto
distribution based on record values, Selcuk J. Appl. Math. 149-161, 2011.
[5] A. Asgharzadeh and A. Fallah, Estimation and prediction for exponentiated family of
distributions based on records, Commun. Stat. - Theory Methods 40 (1), 68-83, 2010.
[6] A. Asgharzadeh, On Bayesian estimation from exponential distribution based on
records, J Korean Stat Soc. 38 (2), 125-130, 2009.
[7] N. Akdam, I. Kınacı and B. Saracoglu, Statistical inference of stress-strength reliability
for the exponential power distribution based on progressive type-II censored samples,
Hacet. J. Math. Stat. 46 (2), 239-253, 2017.
[8] B.C. Arnold, N. Balakrishnan and H.N. Nagaraja, Records, John Wiley and Sons, New
York, 1998.
[9] A. Baklizi, Interval estimation of the stress-strength reliability in the two-parameter
exponential distribution based on records, J Stat Comput Simul. 84 (12), 2670-2679,
2014.
[10] A. Baklizi, Estimation of $Pr(X<Y)$ using record values in the one and two parameter
exponential distributions, Commun. Stat. - Theory Methods 37 (5), 692-698, 2008.
[11] G.D.C. Barriga, F. Louzada and V.G. Cancho, The complementary exponential power
lifetime model, Comput Stat Data Anal 55 (3) 250-1259, 2011.
[12] K.N. Chandler, The distribution and frequency of record values, J. Roy. Stat. Soc. B.
14 (2), 220-228, 1952.
[13] Z. Chen, Statistical inference about the shape parameter of the exponential power
distribution, Stat Pap 40, 459-468, 1999.
[14] M.J. Crowder, Tests for a Family of Survival Models Based on Extremes, Recent
Advances in Reliability Theory, Boston, MA: Birkhauser, 307-321, 2000.
[15] D. Demiray and F. Kızılaslan, Stressstrength reliability estimation of a consecutive
k-out-of-n system based on proportional hazard rate family, J Stat Comput Simul. 99
(1), 159-190, 2022.
[16] B. Efron, The Jackknife, The Bootstrap and Other Resampling Plans, Philadelphia:
Society for industrial and applied mathematics, 1982.
[17] G. Gencer and B. Saracoglu, Comparison of approximate Bayes estimators under
different loss functions for parameters of Odd Weibull distribution, Journal of Selcuk
University Natural and Applied Science, 5 (1), 18-32, 2016.
[18] H.A. Howloader and A.M. Hossain, Bayesian survival estimation of Pareto distribution
of second kind based on failure-censored data, Comput Stat Data Anal 38 ,
301-314, 2002.
[19] M. Jovanović, B. Milošević and M. Obradović, Estimation of stress-strength probability
in a multicomponent model based on geometric distribution, Hacet. J. Math. Stat.
49 (4), 1515–1532, 2020.
[20] İ. Kınacı, S.J. Wu and C. Kus, Confidence intervals and regions for the generalized
inverted exponential distribution based on Progressively Censored and upper records
data, Revstat Stat. J. 17 (4), 429-448, 2019.
[21] İ. Kınacı, K. Karakaya, Y. Akdoğan amd C. Ku, Kesikli Chen Dağılımı için Bayes
tahmini, Selcuk Üniversitesi Fen Fakültesi Fen Dergisi, 42 (2), 144-148, 2016.
[22] S. Kotz, Y. Lumelskii and M. Pensky, Stress-Strength Model and its Generalizations,
World Scientific, River Edge, NJ, USA, 2003.
[23] F. Kızılaslan and M. Nadar, Statistical inference of $ P (X< Y) $ for the Burr Type XII
distribution based on records, Hacet. J. Math. Stat. 46 (4), 713-742, 2017.
[24] J.F. Lawless, Statistical Models and Methods for Lifetime Data, 2nd Edition, Hoboken,
NJ: John Wiley, 2003.
[25] L.M. Leemis, Lifetime distribution identities, IEEE Trans Reliab 35, 170-174, 1986.
[26] D.J. Luckett, Statistical Inference Based on Upper Record Values, College of William
and Mary Undergraduate Honors Theses, Paper 577, 2013.
[27] M.A. Mousa and Z.F. Jaheen, Statistical inference for the Burr model based on progressively
censored data, Comput. Math. with Appl. 43 (10), 1441-1449, 2002.
[28] M. Nadar and F. Kızılaslan, Classical and Bayesian estimation of P(X < Y ) using
upper record values from Kumaraswamy’s distribution, Stat Pap 55 (3), 751-783, 2014.
[29] M. Obradović, M. Jovanović, B. Milosević and V. Jevremović, Estimation of P(X <
Y ) for geometric-Poisson model, Hacet. J. Math. Stat. 44 (4), 949–964, 2015.
[30] M.B. Rajarshi and S. Rajarshi, Bathtub distribution: A review, Commun. Stat. -
Theory Methods 17, 2597-2621, 1988.
[31] R.M. Smith and L.J. Bain, An exponential power life-testing distribution, Commun.
Stat. 4 (5), 469-481, 1975.
[32] C. Tanış, B. Saraçoğlu, C. Kus and A. Pekgor, Transmuted complementary exponential
power distribution: properties and applications, Cumhuriyet Science Journal 41 (2),
419-432, 2020.
[33] C. Tanış, M. Cokbarlı and B. Saraçoğlu, Approximate Bayes estimation for Log-
Dagum distribution, Cumhuriyet Science Journal 40 (2), 477-486, 2019.
[34] C. Tanış and B. Saraçoğlu, Comparisons of six different estimation methods for log-
Kumaraswamy distribution, Therm. Sci. 23 (6), 1839-1847, 2019.
[35] C. Tanış and B. Saraçoğlu, Statistical inference based on upper record values for the
transmuted Weibull distribution, Int. J. Math. Stat. Invent. 5 (9), 18-23, 2017.
[36] B. Tarvirdizade and G.H. Kazemzadeh, Inference on Pr(X > Y ) Based on record
values from the Burr Type X distribution, Hacet. J. Math. Stat. 45 (1), 267-278, 2016.
[37] B. Tarvirdizade and M. Ahmadpour, Estimation of the stressstrength reliability for
the two-parameter bathtub-shaped lifetime distribution based on upper record values,
Stat. Methodol. 31, 58-72, 2016.
[38] L. Tierney and J.B. Kadane, Accurate approximations for posterior moments and
marginal densities, J Am Stat Assoc. 81 (393), 82-86, 1986.
[39] Z. Vidović, On MLEs of the parameters of a modified Weibull distribution based on
record values, J. Appl. Stat. 46 (4), 715-724, 2019.
[40] T. Zhi, Maximum Likelihood Estimation of Parameters in Exponential Power Distribution
with Upper Record Values, Florida International University FIU Digital Commons,
Theses, 2017.
Tanış, C., Saraçoğlu, B., Asgharzadeh, A., Abdi, M. (2023). Estimation of $Pr(X
AMA
Tanış C, Saraçoğlu B, Asgharzadeh A, Abdi M. Estimation of $Pr(X
Chicago
Tanış, Caner, Buğra Saraçoğlu, Akbar Asgharzadeh, and Mousa Abdi. “Estimation of $Pr(X
EndNote
Tanış C, Saraçoğlu B, Asgharzadeh A, Abdi M (March 1, 2023) Estimation of $Pr(X
IEEE
C. Tanış, B. Saraçoğlu, A. Asgharzadeh, and M. Abdi, “Estimation of $Pr(XHacettepe Journal of Mathematics and Statistics, vol. 52, no. 2, pp. 499–511, 2023, doi: 10.15672/hujms.847176.
ISNAD
Tanış, Caner et al. “Estimation of $Pr(XHacettepe Journal of Mathematics and Statistics 52/2 (March 2023), 499-511. https://doi.org/10.15672/hujms.847176.
JAMA
Tanış C, Saraçoğlu B, Asgharzadeh A, Abdi M. Estimation of $Pr(XHacettepe Journal of Mathematics and Statistics. 2023;52:499–511..
MLA
Tanış, Caner et al. “Estimation of $Pr(X
Vancouver
Tanış C, Saraçoğlu B, Asgharzadeh A, Abdi M. Estimation of $Pr(X