Research Article
BibTex RIS Cite

COVERING GROUPOIDS OF CATEGORICAL GROUPS

Year 2013, Volume: 42 Issue: 4, 419 - 430, 01.04.2013

Abstract

References

  • Alemdar, N. and Mucuk, O., The liftings of R-modules to covering groupoids, Hacettepe Journal of Mathematics and Statistics, 41 (6), (2012) 813-822.
  • Brown, R., Topology and groupoids, BookSurge LLC, U.K 2006.
  • Brown, R. and Mucuk, O., Covering groups of non-connected topological groups revisited, Math. Proc. Camb. Phil. Soc. 115 (1994) 97-110.
  • Brown, R. and Spencer C. B., G-groupoids, crossed modules and the fundamental groupoid of a topological group, Proc. Konn. Ned. Akad. v. Wet. 79 (1976) 296-302.
  • Carrasco, P.C., Garzon, A. R. and Miranda J. G., Schreier theory for singular extensions of categorical groups and homotopy classification, Comm. in Algebra 28 (5) (2000) 2585-2613.
  • Chevalley, C., Theory of Lie groups, Princeton University Press, 1946.
  • MacLane, S., Categories for Working Mathematician, Springer-Verlag, Berlin, 1971.
  • Mucuk, O., Covering groups of non-connected topological groups and the monodromy groupoid of a topological groupoid, PhD Thesis, University of Wales, 1993.
  • Mucuk, O., Kılı¸carslan, B., S¸ahan, T. and Alemdar N., Group-groupoid and monodromy groupoid, Topology and its Applications 158 (2011) 2034-2042.
  • Porter, T., Extensions, crossed modules and internal categories in categories of groups with operations, Proc. Edinb. Math. Soc. 30 (1987) 373-381.
  • Rotman, J. J., An Introduction to Algebraic Topology, Graduate Texts in Mathematics; 119, Springer-Verlag, Newyork, 1988.
  • Taylor, R.L., Covering groups of non-connected topological groups, Proc. Amer. Math. Soc., 5 (1954) 753-768.

COVERING GROUPOIDS OF CATEGORICAL GROUPS

Year 2013, Volume: 42 Issue: 4, 419 - 430, 01.04.2013

Abstract

If X is a topological group, then its fundamental groupoid π1(X) is agroup-groupoid which is a group object in the category of groupoids.Further if X is a path connected topological group which has a simplyconnected cover, then the category of covering groups of X and thecategory of covering groupoids of π1(X) are equivalent. In this paperwe prove that if (X, x0) is an H-group, then the fundamental groupoidπ1(X) is a weak categorical group. This enables one to prove that thecategory of the covering spaces of an H-group (X, x0) is equivalent tothe category of covering groupoids of the weak categorical group π1(X)

References

  • Alemdar, N. and Mucuk, O., The liftings of R-modules to covering groupoids, Hacettepe Journal of Mathematics and Statistics, 41 (6), (2012) 813-822.
  • Brown, R., Topology and groupoids, BookSurge LLC, U.K 2006.
  • Brown, R. and Mucuk, O., Covering groups of non-connected topological groups revisited, Math. Proc. Camb. Phil. Soc. 115 (1994) 97-110.
  • Brown, R. and Spencer C. B., G-groupoids, crossed modules and the fundamental groupoid of a topological group, Proc. Konn. Ned. Akad. v. Wet. 79 (1976) 296-302.
  • Carrasco, P.C., Garzon, A. R. and Miranda J. G., Schreier theory for singular extensions of categorical groups and homotopy classification, Comm. in Algebra 28 (5) (2000) 2585-2613.
  • Chevalley, C., Theory of Lie groups, Princeton University Press, 1946.
  • MacLane, S., Categories for Working Mathematician, Springer-Verlag, Berlin, 1971.
  • Mucuk, O., Covering groups of non-connected topological groups and the monodromy groupoid of a topological groupoid, PhD Thesis, University of Wales, 1993.
  • Mucuk, O., Kılı¸carslan, B., S¸ahan, T. and Alemdar N., Group-groupoid and monodromy groupoid, Topology and its Applications 158 (2011) 2034-2042.
  • Porter, T., Extensions, crossed modules and internal categories in categories of groups with operations, Proc. Edinb. Math. Soc. 30 (1987) 373-381.
  • Rotman, J. J., An Introduction to Algebraic Topology, Graduate Texts in Mathematics; 119, Springer-Verlag, Newyork, 1988.
  • Taylor, R.L., Covering groups of non-connected topological groups, Proc. Amer. Math. Soc., 5 (1954) 753-768.
There are 12 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Mathematics
Authors

O. Mucuk This is me

T. Şahan

Publication Date April 1, 2013
Published in Issue Year 2013 Volume: 42 Issue: 4

Cite

APA Mucuk, O., & Şahan, T. (2013). COVERING GROUPOIDS OF CATEGORICAL GROUPS. Hacettepe Journal of Mathematics and Statistics, 42(4), 419-430.
AMA Mucuk O, Şahan T. COVERING GROUPOIDS OF CATEGORICAL GROUPS. Hacettepe Journal of Mathematics and Statistics. April 2013;42(4):419-430.
Chicago Mucuk, O., and T. Şahan. “COVERING GROUPOIDS OF CATEGORICAL GROUPS”. Hacettepe Journal of Mathematics and Statistics 42, no. 4 (April 2013): 419-30.
EndNote Mucuk O, Şahan T (April 1, 2013) COVERING GROUPOIDS OF CATEGORICAL GROUPS. Hacettepe Journal of Mathematics and Statistics 42 4 419–430.
IEEE O. Mucuk and T. Şahan, “COVERING GROUPOIDS OF CATEGORICAL GROUPS”, Hacettepe Journal of Mathematics and Statistics, vol. 42, no. 4, pp. 419–430, 2013.
ISNAD Mucuk, O. - Şahan, T. “COVERING GROUPOIDS OF CATEGORICAL GROUPS”. Hacettepe Journal of Mathematics and Statistics 42/4 (April 2013), 419-430.
JAMA Mucuk O, Şahan T. COVERING GROUPOIDS OF CATEGORICAL GROUPS. Hacettepe Journal of Mathematics and Statistics. 2013;42:419–430.
MLA Mucuk, O. and T. Şahan. “COVERING GROUPOIDS OF CATEGORICAL GROUPS”. Hacettepe Journal of Mathematics and Statistics, vol. 42, no. 4, 2013, pp. 419-30.
Vancouver Mucuk O, Şahan T. COVERING GROUPOIDS OF CATEGORICAL GROUPS. Hacettepe Journal of Mathematics and Statistics. 2013;42(4):419-30.