BibTex RIS Cite

Approximation Properties of Stancu Type Meyer-König andZeller Operators

Year 2013, Volume: 42 Issue: 2, 139 - 148, 01.02.2013

Abstract

In this paper, we introduce a Stancu type modification of the q- MeyerK¨ onig and Zeller operators and investigate the Korovkin type statisticalapproximation properties of this modification via A−statistical convergence. We also compute rate of convergence of the defined operatorsby means of modulus of continuity. Furthermore, we give an rth order generalization of our operators and obtain approximation results ofthem.

References

  • Agratini O., On a q−analogue of Stancu operators, Cent Eur J Math, 8(1), 191-198, 2010. Agratini O., Statistical convergence of a non-positive approximation process, Chaos Solitons Fractals, 44, 977-981, 2011.
  • Altomare F, Campiti M., Korovkin-type approximation theory and its applications, Walter de Gruyter studies in math. Berlin:de Gruyter&Co, 1994.
  • Andrews GE, Askey R. Roy R., Special functions, Cambridge University Press, 1999.
  • Cheney EW, Sharma A., Bernstein power series, Can J Math, 16, 241-243, 1964.
  • Do˘ gru O., Duman O., Statistical approximation of Meyer-K¨ onig and Zeller operators based on the q−integers, Publ Math Debrecen, 68, 199-214, 2006.
  • Duman O, Orhan C., An abstract version of the Korovkin approximation theorem. Publ Math Debrecen 69, 33-46, 2006.
  • Fast H. Sur la convergence statistique. Collog Math, 2, 241-244, 1951.
  • Fridy JA. On statistical convergence. Analysis, 5, 301-313, 1985.
  • Gadjiev AD, Orhan C., Some approximation theorems via statistical convergence, Rocky Mountain J. Math, 32, 129-138, 2002.
  • Hardy GH., Divergent series, (Oxford Univ. Press) London, 1949.
  • Kolk E., Matrix summability of statistically convergent sequences, Analysis, 13, 77-83, 1993. Korovkin PP., Linear operators and the theory of approximation, India, Delhi: Hindustan Publishing Corp, 1960.
  • Kirov G, Popova L., A generalization of the linear positive operators, Math. Balkanica NS, 7, 149-162, 1993.
  • Lupa¸ s A., A q−analoque of the Bernstein operator. University of Cluj-Napoca Seminar on Numerical and Statistical Calculus Preprint, 9, 85-92, 1987.
  • Lupa¸ s A., A q−analoques of Stancu operators, Math. Anal. Approx. Theor. The 5th Romanian-German Seminar on Approximation Theory and its Application, 145-154, 2002. Meyer-K¨ onig W, Zeller K., Bernsteinsche potenzreihen, Studia Math., 19, 89-94, 1960.
  • Nowak G., Approximation properties for generalized q−Bernstein polynomials, J Math Anal Appl, 350, 50-55, 2009.
  • ¨ Ozarslan MA, Duman O. Approximation theorems by Meyer-K¨ onig and Zeller type operators. Chaos Solitons Fractals 41, 451-456, 2009.
  • Phillips GM., Bernstein polynomials based on the q−integers, Ann Numer Math 4, 511-518, 19 Stancu DD. Approximation of functions by a new class of linear polynomial operators. Rev Roumaine Math Pures Appl 8, 1173-1194, 1968.
  • Trif T., Meyer-K¨ onig and Zeller operators based on the q−integers, Rev Anal Num´ er Th´ eor Approx. 29, 221-229, 2000.
  • Verma DK, Gupta V, Agrawal PN., Some approximation properties of Baskakov-DurrmeyerStancu operators, Appl. Math. Comput., 218(11), 6549–6556, 2012.

Approximation Properties of Stancu Type Meyer-König andZeller Operators

Year 2013, Volume: 42 Issue: 2, 139 - 148, 01.02.2013

Abstract

-

References

  • Agratini O., On a q−analogue of Stancu operators, Cent Eur J Math, 8(1), 191-198, 2010. Agratini O., Statistical convergence of a non-positive approximation process, Chaos Solitons Fractals, 44, 977-981, 2011.
  • Altomare F, Campiti M., Korovkin-type approximation theory and its applications, Walter de Gruyter studies in math. Berlin:de Gruyter&Co, 1994.
  • Andrews GE, Askey R. Roy R., Special functions, Cambridge University Press, 1999.
  • Cheney EW, Sharma A., Bernstein power series, Can J Math, 16, 241-243, 1964.
  • Do˘ gru O., Duman O., Statistical approximation of Meyer-K¨ onig and Zeller operators based on the q−integers, Publ Math Debrecen, 68, 199-214, 2006.
  • Duman O, Orhan C., An abstract version of the Korovkin approximation theorem. Publ Math Debrecen 69, 33-46, 2006.
  • Fast H. Sur la convergence statistique. Collog Math, 2, 241-244, 1951.
  • Fridy JA. On statistical convergence. Analysis, 5, 301-313, 1985.
  • Gadjiev AD, Orhan C., Some approximation theorems via statistical convergence, Rocky Mountain J. Math, 32, 129-138, 2002.
  • Hardy GH., Divergent series, (Oxford Univ. Press) London, 1949.
  • Kolk E., Matrix summability of statistically convergent sequences, Analysis, 13, 77-83, 1993. Korovkin PP., Linear operators and the theory of approximation, India, Delhi: Hindustan Publishing Corp, 1960.
  • Kirov G, Popova L., A generalization of the linear positive operators, Math. Balkanica NS, 7, 149-162, 1993.
  • Lupa¸ s A., A q−analoque of the Bernstein operator. University of Cluj-Napoca Seminar on Numerical and Statistical Calculus Preprint, 9, 85-92, 1987.
  • Lupa¸ s A., A q−analoques of Stancu operators, Math. Anal. Approx. Theor. The 5th Romanian-German Seminar on Approximation Theory and its Application, 145-154, 2002. Meyer-K¨ onig W, Zeller K., Bernsteinsche potenzreihen, Studia Math., 19, 89-94, 1960.
  • Nowak G., Approximation properties for generalized q−Bernstein polynomials, J Math Anal Appl, 350, 50-55, 2009.
  • ¨ Ozarslan MA, Duman O. Approximation theorems by Meyer-K¨ onig and Zeller type operators. Chaos Solitons Fractals 41, 451-456, 2009.
  • Phillips GM., Bernstein polynomials based on the q−integers, Ann Numer Math 4, 511-518, 19 Stancu DD. Approximation of functions by a new class of linear polynomial operators. Rev Roumaine Math Pures Appl 8, 1173-1194, 1968.
  • Trif T., Meyer-K¨ onig and Zeller operators based on the q−integers, Rev Anal Num´ er Th´ eor Approx. 29, 221-229, 2000.
  • Verma DK, Gupta V, Agrawal PN., Some approximation properties of Baskakov-DurrmeyerStancu operators, Appl. Math. Comput., 218(11), 6549–6556, 2012.
There are 19 citations in total.

Details

Primary Language Turkish
Journal Section Mathematics
Authors

Mediha Örkçü This is me

Publication Date February 1, 2013
Published in Issue Year 2013 Volume: 42 Issue: 2

Cite

APA Örkçü, M. (2013). Approximation Properties of Stancu Type Meyer-König andZeller Operators. Hacettepe Journal of Mathematics and Statistics, 42(2), 139-148.
AMA Örkçü M. Approximation Properties of Stancu Type Meyer-König andZeller Operators. Hacettepe Journal of Mathematics and Statistics. February 2013;42(2):139-148.
Chicago Örkçü, Mediha. “Approximation Properties of Stancu Type Meyer-König AndZeller Operators”. Hacettepe Journal of Mathematics and Statistics 42, no. 2 (February 2013): 139-48.
EndNote Örkçü M (February 1, 2013) Approximation Properties of Stancu Type Meyer-König andZeller Operators. Hacettepe Journal of Mathematics and Statistics 42 2 139–148.
IEEE M. Örkçü, “Approximation Properties of Stancu Type Meyer-König andZeller Operators”, Hacettepe Journal of Mathematics and Statistics, vol. 42, no. 2, pp. 139–148, 2013.
ISNAD Örkçü, Mediha. “Approximation Properties of Stancu Type Meyer-König AndZeller Operators”. Hacettepe Journal of Mathematics and Statistics 42/2 (February 2013), 139-148.
JAMA Örkçü M. Approximation Properties of Stancu Type Meyer-König andZeller Operators. Hacettepe Journal of Mathematics and Statistics. 2013;42:139–148.
MLA Örkçü, Mediha. “Approximation Properties of Stancu Type Meyer-König AndZeller Operators”. Hacettepe Journal of Mathematics and Statistics, vol. 42, no. 2, 2013, pp. 139-48.
Vancouver Örkçü M. Approximation Properties of Stancu Type Meyer-König andZeller Operators. Hacettepe Journal of Mathematics and Statistics. 2013;42(2):139-48.