Research Article
BibTex RIS Cite

1-Soliton Solution of the Three Component System of Wu-Zhang Equations  ABSTRACT  |  FULL TEXT

Year 2012, Volume: 41 Issue: 4, 537 - 543, 01.04.2012

Abstract

In this paper, the 1-soliton solution is obtained for the three-component
Wu-Zhang equation. The soliton components comprises both topological as well as non-topological soliton solutions. The ansatz method is
employed to carry out the integration of this coupled system of nonlinear evolution equations.

References

  • Biswas, A. 1-soliton solution of (1 + 2) dimensional nonlinear Schr¨odinger’s equation in dual-power law media, Phys. Lett. A 372, 5941–5943, 2008.
  • Biswas, A. 1-soliton solution of the K(m, n) equation with generalized evolution, Phys. Lett. A 372, 4601–4602, 2008.
  • Biswas, A. Solitary wave solution for the generalized Kawahara equation, Appl. Math. Lett. 22, 208–210, 2009.
  • Biswas, A. 1-soliton solution of the B(m, n) equation with generalized evolution, Commun. Nonlinear Sci. Numer. Simul. 14, 3226–3229, 2009.
  • Biswas, A. and Milovic, D. Bright and dark solitons of the generalized nonlinear Schr¨odinger’s equation, Commun. Nonlinear Sci. Numer. Simulat. 15, 1473–1484, 2010.
  • Emplit, P., Hamaide, J. P., Reinaud, F., Froehly, C. and Bartelemy, A. Picosecond steps and dark pulses through nonlinear single mode fibers, Opt. Commun. 62, 374–379, 1987.
  • Saha, M., Sarma, A. K. and Biswas, A. Dark optical solitons in power law media with time- dependent coefficients, Phys. Lett A 373, 4438–4441, 2009.
  • Scott, M. M., Kostylev, M. P., Kalinikos, B. A. and Patton, C. E. Excitation of bright and dark envelope solitons for magnetostatic waves with attractive nonlinearity, Phys. Rev B. 71, 174440, 1–4, 2005. [9] Taghizadeh, N., Akbari, M. and Shahidi, M. Application of reduced differential transform method to the Wu-Zhang equation, Australian Journal of Basic and Applied Sciences 5 (5), 565–571, 2011.
  • Triki, H. and Ismail, M. S. Soliton solutions of a BBM(m, n) equation with generalized evolution, Appl. Math. Comput. 217, 48–54, 2010.
  • Triki, H. and Wazwaz, A. M. Bright and dark soliton solutions for a K(m, n) equation with t-dependent coefficients, Phys. Lett A 373, 2162–2165, 2009.
  • Wazwaz, A. M. New solitary wave solutions to the modified Kawahara equation, Phys. Lett. A 360, 588–592, 2007. [13] Wazwaz, A. M. New solitons and kink solutions for the Gardner equation, Commun. Non- linear Sci. Numer. Simul. 12, 1395, 2007.
  • Wazwaz, A. M. and Triki, H. Soliton solutions for a generalized KdV and BBM equations with time-dependent coefficients, Commun Nonlinear Sci Numer Simulat 16, 1122–1126, 2011.

1-Soliton Solution of the Three Component System of Wu-Zhang Equations  ABSTRACT  |  FULL TEXT

Year 2012, Volume: 41 Issue: 4, 537 - 543, 01.04.2012

Abstract

References

  • Biswas, A. 1-soliton solution of (1 + 2) dimensional nonlinear Schr¨odinger’s equation in dual-power law media, Phys. Lett. A 372, 5941–5943, 2008.
  • Biswas, A. 1-soliton solution of the K(m, n) equation with generalized evolution, Phys. Lett. A 372, 4601–4602, 2008.
  • Biswas, A. Solitary wave solution for the generalized Kawahara equation, Appl. Math. Lett. 22, 208–210, 2009.
  • Biswas, A. 1-soliton solution of the B(m, n) equation with generalized evolution, Commun. Nonlinear Sci. Numer. Simul. 14, 3226–3229, 2009.
  • Biswas, A. and Milovic, D. Bright and dark solitons of the generalized nonlinear Schr¨odinger’s equation, Commun. Nonlinear Sci. Numer. Simulat. 15, 1473–1484, 2010.
  • Emplit, P., Hamaide, J. P., Reinaud, F., Froehly, C. and Bartelemy, A. Picosecond steps and dark pulses through nonlinear single mode fibers, Opt. Commun. 62, 374–379, 1987.
  • Saha, M., Sarma, A. K. and Biswas, A. Dark optical solitons in power law media with time- dependent coefficients, Phys. Lett A 373, 4438–4441, 2009.
  • Scott, M. M., Kostylev, M. P., Kalinikos, B. A. and Patton, C. E. Excitation of bright and dark envelope solitons for magnetostatic waves with attractive nonlinearity, Phys. Rev B. 71, 174440, 1–4, 2005. [9] Taghizadeh, N., Akbari, M. and Shahidi, M. Application of reduced differential transform method to the Wu-Zhang equation, Australian Journal of Basic and Applied Sciences 5 (5), 565–571, 2011.
  • Triki, H. and Ismail, M. S. Soliton solutions of a BBM(m, n) equation with generalized evolution, Appl. Math. Comput. 217, 48–54, 2010.
  • Triki, H. and Wazwaz, A. M. Bright and dark soliton solutions for a K(m, n) equation with t-dependent coefficients, Phys. Lett A 373, 2162–2165, 2009.
  • Wazwaz, A. M. New solitary wave solutions to the modified Kawahara equation, Phys. Lett. A 360, 588–592, 2007. [13] Wazwaz, A. M. New solitons and kink solutions for the Gardner equation, Commun. Non- linear Sci. Numer. Simul. 12, 1395, 2007.
  • Wazwaz, A. M. and Triki, H. Soliton solutions for a generalized KdV and BBM equations with time-dependent coefficients, Commun Nonlinear Sci Numer Simulat 16, 1122–1126, 2011.
There are 12 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Mathematics
Authors

H. Triki This is me

T. Hayat This is me

O.m. Aldossary This is me

 a. Biswas This is me

Publication Date April 1, 2012
Published in Issue Year 2012 Volume: 41 Issue: 4

Cite

APA Triki, H., Hayat, T., Aldossary, O., Biswas, . (2012). 1-Soliton Solution of the Three Component System of Wu-Zhang Equations  ABSTRACT  |  FULL TEXT. Hacettepe Journal of Mathematics and Statistics, 41(4), 537-543.
AMA Triki H, Hayat T, Aldossary O, Biswas . 1-Soliton Solution of the Three Component System of Wu-Zhang Equations  ABSTRACT  |  FULL TEXT. Hacettepe Journal of Mathematics and Statistics. April 2012;41(4):537-543.
Chicago Triki, H., T. Hayat, O.m. Aldossary, and  a. Biswas. “1-Soliton Solution of the Three Component System of Wu-Zhang Equations  ABSTRACT  |  FULL TEXT”. Hacettepe Journal of Mathematics and Statistics 41, no. 4 (April 2012): 537-43.
EndNote Triki H, Hayat T, Aldossary O, Biswas  (April 1, 2012) 1-Soliton Solution of the Three Component System of Wu-Zhang Equations  ABSTRACT  |  FULL TEXT. Hacettepe Journal of Mathematics and Statistics 41 4 537–543.
IEEE H. Triki, T. Hayat, O. Aldossary, and  . Biswas, “1-Soliton Solution of the Three Component System of Wu-Zhang Equations  ABSTRACT  |  FULL TEXT”, Hacettepe Journal of Mathematics and Statistics, vol. 41, no. 4, pp. 537–543, 2012.
ISNAD Triki, H. et al. “1-Soliton Solution of the Three Component System of Wu-Zhang Equations  ABSTRACT  |  FULL TEXT”. Hacettepe Journal of Mathematics and Statistics 41/4 (April 2012), 537-543.
JAMA Triki H, Hayat T, Aldossary O, Biswas . 1-Soliton Solution of the Three Component System of Wu-Zhang Equations  ABSTRACT  |  FULL TEXT. Hacettepe Journal of Mathematics and Statistics. 2012;41:537–543.
MLA Triki, H. et al. “1-Soliton Solution of the Three Component System of Wu-Zhang Equations  ABSTRACT  |  FULL TEXT”. Hacettepe Journal of Mathematics and Statistics, vol. 41, no. 4, 2012, pp. 537-43.
Vancouver Triki H, Hayat T, Aldossary O, Biswas . 1-Soliton Solution of the Three Component System of Wu-Zhang Equations  ABSTRACT  |  FULL TEXT. Hacettepe Journal of Mathematics and Statistics. 2012;41(4):537-43.