BibTex RIS Cite

More General Forms of Generalized Fuzzy Bi-ideals in Semigroups FULL TEXT

Year 2012, Volume: 41 Issue: 1, 15 - 23, 01.01.2012

References

  • Bhakat, S. K. (∈, ∈ ∨ q)-fuzzy normal, quasinormal and maximal subgroups, Fuzzy Sets and Systems 112, 299–312, 2000.
  • Bhakat, S. K. (∈ ∨ q)-level subset, Fuzzy Sets and Systems 103, 529–533, 1999.
  • Bhakat, S. K. and Das, P. (∈, ∈ ∨ q)-fuzzy subgroup, Fuzzy Sets and Systems 80, 359–368, 1996.
  • Bhakat, S. K. and Das, P. Fuzzy subrings and ideals redefined, Fuzzy Sets and Systems 81, 383–393, 1996. [5] Bhakat, S. K. and Das, P. On the definition of a fuzzy subgroup, Fuzzy Sets and Systems 51, 235–241, 1992.
  • Hong, S. M., Jun, Y. B. and Meng, J. Fuzzy interior ideals in semigroups, Indian J. Pure Appl. Math. 26 (9), 859–863, 1995.
  • Jun, Y. B. Generalizations of (∈, ∈ ∨q)-fuzzy subalgebras in BCK/BCI-algebras, Comput. Math. Appl. 58, 1383–1390, 2009.
  • Jun, Y. B. Fuzzy subalgebras of type (α, β) in BCK/BCI-algebras, Kyungpook Math. J. 47, 403–410, 2007. [9] Jun, Y. B. On (α, β)-fuzzy subalgebras of BCK/BCI-algebras, Bull. Korean Math. Soc. 42, 703–711, 2005. [10] Jun, Y. B. and Song, S. Z. Generalized fuzzy interior ideals in semigroups, Inform. Sci. 176, 3079–3093, 2006.
  • Kazanci, O. and Yamak, S. Generalized fuzzy bi-ideals of semigroups, Soft Comput. 12, 1119–1124, 2008.
  • Kuroki, N. Fuzzy semiprime ideals in semigroups, Fuzzy Sets and Systems 8, 71–79, 1982. [13] Kuroki, N. On fuzzy ideals and fuzzy bi-ideals in semigroups, Fuzzy Sets and Systems 5, 203–215, 1981. [14] Kuroki, N. Fuzzy bi-ideals in semigroups, Comment. Math. Univ. St. Pauli 28, 17–21, 1979. [15] Mordeson, J. N., Malik, D. S. and Kuroki, N. Fuzzy Semigroups (Studies in Fuzziness and Soft Computing 131, Springer-Verlag, Berline, 2003).
  • Pu, P. M. and Liu, Y. M. Fuzzy topology I, Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76, 571–599, 1980.
  • Yin, Y. Q., Xu, D. and Li, H. X. The (∈, ∈ ∨ q)-fuzzy subsemigroups and ideals of an (∈, ∈ ∨q)-fuzzy semigroup, Southeast Asian Bull. Math. 33, 391–400, 2009.

More General Forms of Generalized Fuzzy Bi-ideals in Semigroups FULL TEXT

Year 2012, Volume: 41 Issue: 1, 15 - 23, 01.01.2012

References

  • Bhakat, S. K. (∈, ∈ ∨ q)-fuzzy normal, quasinormal and maximal subgroups, Fuzzy Sets and Systems 112, 299–312, 2000.
  • Bhakat, S. K. (∈ ∨ q)-level subset, Fuzzy Sets and Systems 103, 529–533, 1999.
  • Bhakat, S. K. and Das, P. (∈, ∈ ∨ q)-fuzzy subgroup, Fuzzy Sets and Systems 80, 359–368, 1996.
  • Bhakat, S. K. and Das, P. Fuzzy subrings and ideals redefined, Fuzzy Sets and Systems 81, 383–393, 1996. [5] Bhakat, S. K. and Das, P. On the definition of a fuzzy subgroup, Fuzzy Sets and Systems 51, 235–241, 1992.
  • Hong, S. M., Jun, Y. B. and Meng, J. Fuzzy interior ideals in semigroups, Indian J. Pure Appl. Math. 26 (9), 859–863, 1995.
  • Jun, Y. B. Generalizations of (∈, ∈ ∨q)-fuzzy subalgebras in BCK/BCI-algebras, Comput. Math. Appl. 58, 1383–1390, 2009.
  • Jun, Y. B. Fuzzy subalgebras of type (α, β) in BCK/BCI-algebras, Kyungpook Math. J. 47, 403–410, 2007. [9] Jun, Y. B. On (α, β)-fuzzy subalgebras of BCK/BCI-algebras, Bull. Korean Math. Soc. 42, 703–711, 2005. [10] Jun, Y. B. and Song, S. Z. Generalized fuzzy interior ideals in semigroups, Inform. Sci. 176, 3079–3093, 2006.
  • Kazanci, O. and Yamak, S. Generalized fuzzy bi-ideals of semigroups, Soft Comput. 12, 1119–1124, 2008.
  • Kuroki, N. Fuzzy semiprime ideals in semigroups, Fuzzy Sets and Systems 8, 71–79, 1982. [13] Kuroki, N. On fuzzy ideals and fuzzy bi-ideals in semigroups, Fuzzy Sets and Systems 5, 203–215, 1981. [14] Kuroki, N. Fuzzy bi-ideals in semigroups, Comment. Math. Univ. St. Pauli 28, 17–21, 1979. [15] Mordeson, J. N., Malik, D. S. and Kuroki, N. Fuzzy Semigroups (Studies in Fuzziness and Soft Computing 131, Springer-Verlag, Berline, 2003).
  • Pu, P. M. and Liu, Y. M. Fuzzy topology I, Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76, 571–599, 1980.
  • Yin, Y. Q., Xu, D. and Li, H. X. The (∈, ∈ ∨ q)-fuzzy subsemigroups and ideals of an (∈, ∈ ∨q)-fuzzy semigroup, Southeast Asian Bull. Math. 33, 391–400, 2009.
There are 11 citations in total.

Details

Primary Language Turkish
Journal Section Mathematics
Authors

Young Bae Jun This is me

Mehmet Ali Öztürk This is me

Yunqiang Yin This is me

Publication Date January 1, 2012
Published in Issue Year 2012 Volume: 41 Issue: 1

Cite

APA Jun, Y. B., Öztürk, M. A., & Yin, Y. (2012). More General Forms of Generalized Fuzzy Bi-ideals in Semigroups FULL TEXT. Hacettepe Journal of Mathematics and Statistics, 41(1), 15-23.
AMA Jun YB, Öztürk MA, Yin Y. More General Forms of Generalized Fuzzy Bi-ideals in Semigroups FULL TEXT. Hacettepe Journal of Mathematics and Statistics. January 2012;41(1):15-23.
Chicago Jun, Young Bae, Mehmet Ali Öztürk, and Yunqiang Yin. “More General Forms of Generalized Fuzzy Bi-Ideals in Semigroups FULL TEXT”. Hacettepe Journal of Mathematics and Statistics 41, no. 1 (January 2012): 15-23.
EndNote Jun YB, Öztürk MA, Yin Y (January 1, 2012) More General Forms of Generalized Fuzzy Bi-ideals in Semigroups FULL TEXT. Hacettepe Journal of Mathematics and Statistics 41 1 15–23.
IEEE Y. B. Jun, M. A. Öztürk, and Y. Yin, “More General Forms of Generalized Fuzzy Bi-ideals in Semigroups FULL TEXT”, Hacettepe Journal of Mathematics and Statistics, vol. 41, no. 1, pp. 15–23, 2012.
ISNAD Jun, Young Bae et al. “More General Forms of Generalized Fuzzy Bi-Ideals in Semigroups FULL TEXT”. Hacettepe Journal of Mathematics and Statistics 41/1 (January 2012), 15-23.
JAMA Jun YB, Öztürk MA, Yin Y. More General Forms of Generalized Fuzzy Bi-ideals in Semigroups FULL TEXT. Hacettepe Journal of Mathematics and Statistics. 2012;41:15–23.
MLA Jun, Young Bae et al. “More General Forms of Generalized Fuzzy Bi-Ideals in Semigroups FULL TEXT”. Hacettepe Journal of Mathematics and Statistics, vol. 41, no. 1, 2012, pp. 15-23.
Vancouver Jun YB, Öztürk MA, Yin Y. More General Forms of Generalized Fuzzy Bi-ideals in Semigroups FULL TEXT. Hacettepe Journal of Mathematics and Statistics. 2012;41(1):15-23.