Research Article
BibTex RIS Cite

SOME NOTES ON DEDEKIND MODULES

Year 2011, Volume: 40 Issue: 5, 627 - 634, 01.05.2011

Abstract

References

  • Alkan, M., Sara¸c, B. and Tıra¸s, Y. Dedekind modules, Comm. Alg. 33 (5), 1617–1626, 2005 [2] Anderson, D. D. and Anderson, D. F. Cancellation modules and related modules (Lect. Notes Pure Appl. Math 220, Dekker, New York, 2001), 13-25.
  • Azizi, A. Weak multiplication modules, Czech Math. J. 53 (128), 529–534, 2003.
  • Bast, Z. E. and Smith, P. F. Multiplication modules, Comm. Alg. 16 (4), 755–779, 1988.
  • Kaplansky, I. Commutative Rings (Allyn and Bacon, Boston, 1970).
  • Matsumura, H. Commutative Ring Theory (Cambridge University Press, Cambridge, 1989). [7] Naoum, A. G. and Al-Alwan, F. H. Dedekind modules, Comm. Alg. 24 (2), 397–412, 1996. [8] Naoum, A. G. On the ring of endomorphisms of finitely generated multiplication modules, Periodica Mathematica Hungarica 21 (3), 249–255, 1990.
  • ¨Ozcan, A. C¸ ., Harmanci. A. and Smith, P. F. Duo modules, Glasgow Math. J. 48, 533–545, 2006. [10] Sara¸c, B., Smith, P. F. and Tıra¸s, Y. On Dedekind modules, Comm. Alg. 35 (5), 1533–1538, 2007. [11] Smith, P. F. Multiplication modules and projective modules, Periodica Mathematica Hun- garica 29 (2), 163–168, 1994.

SOME NOTES ON DEDEKIND MODULES

Year 2011, Volume: 40 Issue: 5, 627 - 634, 01.05.2011

Abstract

In this paper, we give the relation between a finitely generated torsion free Dedekind module and the endomorphism ring of O(M)M. In addition it is proved that the endomorphism ring of a finitely generated torsion free Dedekind module M is a Dedekind domain. Also, we give equivalent condition for Dedekind modules, duo modules and uniform modules. Various properties and characterizations of Dedekind modules over integral domains are considered and consequently, necessary and sufficient conditions for an R-module M to be a Dedekind module are given.

References

  • Alkan, M., Sara¸c, B. and Tıra¸s, Y. Dedekind modules, Comm. Alg. 33 (5), 1617–1626, 2005 [2] Anderson, D. D. and Anderson, D. F. Cancellation modules and related modules (Lect. Notes Pure Appl. Math 220, Dekker, New York, 2001), 13-25.
  • Azizi, A. Weak multiplication modules, Czech Math. J. 53 (128), 529–534, 2003.
  • Bast, Z. E. and Smith, P. F. Multiplication modules, Comm. Alg. 16 (4), 755–779, 1988.
  • Kaplansky, I. Commutative Rings (Allyn and Bacon, Boston, 1970).
  • Matsumura, H. Commutative Ring Theory (Cambridge University Press, Cambridge, 1989). [7] Naoum, A. G. and Al-Alwan, F. H. Dedekind modules, Comm. Alg. 24 (2), 397–412, 1996. [8] Naoum, A. G. On the ring of endomorphisms of finitely generated multiplication modules, Periodica Mathematica Hungarica 21 (3), 249–255, 1990.
  • ¨Ozcan, A. C¸ ., Harmanci. A. and Smith, P. F. Duo modules, Glasgow Math. J. 48, 533–545, 2006. [10] Sara¸c, B., Smith, P. F. and Tıra¸s, Y. On Dedekind modules, Comm. Alg. 35 (5), 1533–1538, 2007. [11] Smith, P. F. Multiplication modules and projective modules, Periodica Mathematica Hun- garica 29 (2), 163–168, 1994.
There are 6 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Mathematics
Authors

Mehdi Khoramdel This is me

Saboura D.p. Hesari This is me

Publication Date May 1, 2011
Published in Issue Year 2011 Volume: 40 Issue: 5

Cite

APA Khoramdel, M., & Hesari, S. D. (2011). SOME NOTES ON DEDEKIND MODULES. Hacettepe Journal of Mathematics and Statistics, 40(5), 627-634.
AMA Khoramdel M, Hesari SD. SOME NOTES ON DEDEKIND MODULES. Hacettepe Journal of Mathematics and Statistics. May 2011;40(5):627-634.
Chicago Khoramdel, Mehdi, and Saboura D.p. Hesari. “SOME NOTES ON DEDEKIND MODULES”. Hacettepe Journal of Mathematics and Statistics 40, no. 5 (May 2011): 627-34.
EndNote Khoramdel M, Hesari SD (May 1, 2011) SOME NOTES ON DEDEKIND MODULES. Hacettepe Journal of Mathematics and Statistics 40 5 627–634.
IEEE M. Khoramdel and S. D. Hesari, “SOME NOTES ON DEDEKIND MODULES”, Hacettepe Journal of Mathematics and Statistics, vol. 40, no. 5, pp. 627–634, 2011.
ISNAD Khoramdel, Mehdi - Hesari, Saboura D.p. “SOME NOTES ON DEDEKIND MODULES”. Hacettepe Journal of Mathematics and Statistics 40/5 (May 2011), 627-634.
JAMA Khoramdel M, Hesari SD. SOME NOTES ON DEDEKIND MODULES. Hacettepe Journal of Mathematics and Statistics. 2011;40:627–634.
MLA Khoramdel, Mehdi and Saboura D.p. Hesari. “SOME NOTES ON DEDEKIND MODULES”. Hacettepe Journal of Mathematics and Statistics, vol. 40, no. 5, 2011, pp. 627-34.
Vancouver Khoramdel M, Hesari SD. SOME NOTES ON DEDEKIND MODULES. Hacettepe Journal of Mathematics and Statistics. 2011;40(5):627-34.