Research Article
BibTex RIS Cite

ON THE GENERALIZED BESSEL HEAT EQUATION RELATED TO THE GENERALIZED BESSEL DIAMOND OPERATOR

Year 2011, Volume: 40 Issue: 2, 179 - 189, 01.02.2011

Abstract

In this article, we study the equation

∂tu(x, t) = c
2 ⊗
m,k
B u(x, t)
with the initial condition u(x, 0) = f(x) for x ∈ R
+
n . Here the operator

m,k
B is called the Generalized Bessel Diamond Operator, iterated k
times, and is defined by

m,k
B =
Bx1 + Bx2 + · · · + Bxp
m


Bxp+1 + · · · + Bxp+q
mk
,
where k and m are positive integers, p + q = n, Bxi =

2
∂x2
i
+
2vi
xi

∂xi
,
2vi = 2αi + 1, αi > −
1
2
, xi > 0, i = 1, 2, . . . , n, n being the dimension
of the space R
+
n , u(x, t) is an unknown function of the form (x, t) =
(x1, . . . , xn, t) ∈ R
+
n ×(0, ∞), f(x) is a given generalized function and c
a constant. We obtain the solution of this equation, which is related to
the spectrum and the kernel, the so called generalized Bessel diamond
heat kernel. Moreover, the generalized Bessel diamond heat kernel is
shown to have interesting properties and to be related to the kernel of
an extension of the heat equatio

References

  • Chou, K. C. and Forsen, S. Diffusion-controlled effects in reversible enzymatic fast reaction system: Critical spherical shell and proximity rate constants, Biophysical Chemistry 12, 255–263, 1980.
  • Chou, K. C. and Jiang, S. P. Studies on the rate of diffusion-controlled reactions of enzymes, Scientia Sinica 17, 664–680, 1974.
  • Chou, K. C., Li, T. T. and Forsen, S. The critical spherical shell in enzymatic fast reaction systems, Biophysical Chemistry 12, 265–269, 1980.
  • Chou, K. C. and Zhou, G. P. Role of the protein outside active site on the diffusion-controlled reaction of enzyme, Journal of American Chemical Society 104, 1409–1413, 1982.
  • Kipriyanov, I. A. Fourier Bessel transforms and imbedding theorems for weight classes, Trudy Math. Inst. Steklov 89, 130–213, 1967 (Russian); translated as Proc. Steklov Inst. Math. 89 1967, 149–246, 1968.
  • Kipriyanov, I. A. Boundary-value problems for partial differential equations with the Bessel differential operator(Russian), Doklady Acad. Nauk USSR 158 (2), 274–278, 1964.
  • Levitan, B. M. Expansion in Fourier series and integrals with Bessel functions, Uspeki Mat. Nauka (N.S) 6 2 (42), 102–143, 1951 (in Russian).
  • Nonlaopon, K. and Kananthai, A. On the ultra-hyperbolic heat kernel, International Journal of Applied Mathematics 17, 19–28, 2004.
  • Nonlaopon, K. and Kananthai, A. On the ultra-hyperbolic heat kernel related to the spectrum, International Journal of Pure and Applied Mathematics 13, 215–25, 2003.
  • Nonlaopon, K. and Kananthai, A. On the generalized ultra-hyperbolic heat kernel related to the spectrum, Science Asia 32, 21–24, 2006.
  • Saglam, A., Yildirim, H. and Sarikaya, M. Z. On the Bessel heat equation related to the Bessel diamond operator, Acta Appl. Math. 109, 849–860, 2010.
  • Saglam, A., Yildirim, H. and Sarikaya, M. Z. On the Bessel ultra-hyperbolic heat equation, Thai Journal of Mathematics 8 (1), 149–159, 2010.
  • Sarıkaya, M. Z. On the elemantary solution of the Bessel diamond operator (Ph.D. Thesis, Afyon Kocatepe University, 2007).
  • Sarıkaya, M. Z. and Yıldırım, H. On the Bessel diamond and the nonlinear Bessel diamond operator related to the Bessel wave equation, Nonlinear Analysis 68, 430–442, 2008.
  • Sarıkaya, M. Z. and Yıldırım, H. On the weak solutions of the compound Bessel ultra- hyperbolic equation, Applied Mathematics and Computation 189, 910–917, 2007.
  • Yıldırım H. Riesz potentials generated by a generalized shift operator (Ph.D. Thesis, Ankara University, 1995).
  • Yıldırım, H. and Sarıkaya, M. Z. On the generalized Riesz type potentials, Jour. Inst. Math. Comp. Sci. 14 (3), 217–224, 2001.
  • Yıldırım, H., Sarıkaya M. Z. and ¨Ozt¨urk S. The solutions of the n-dimensional Bessel diamond operator and the Fourier-Bessel transform of their convolution, Proc. Indian Acad. Sci. (Math. Sci.) 114 (4), 375–387, 2004.
  • Zhou, G. Influences of Van der Waals’ force upon diffusioncontrolled reaction rate, Sci. Sinica. 22, 845–858, 1979.
  • Zhou, Z. P., Li, T. T. and Chou, K. C. The flexibility during the juxtaposition of reacting groups and the upper limits of enzyme reactions, Biophysical Chemistry 14, 277–281, 1982. [21] Zhou, G. Q. and Zhong, W. Z. Diffusion-controlled reactions of enzymes. A comparison between Chou’s model and Alberty-Hammes-Eigen’s model, Eur J Biochem 128, 383–387, 1982.

ON THE GENERALIZED BESSEL HEAT EQUATION RELATED TO THE GENERALIZED BESSEL DIAMOND OPERATOR

Year 2011, Volume: 40 Issue: 2, 179 - 189, 01.02.2011

Abstract

References

  • Chou, K. C. and Forsen, S. Diffusion-controlled effects in reversible enzymatic fast reaction system: Critical spherical shell and proximity rate constants, Biophysical Chemistry 12, 255–263, 1980.
  • Chou, K. C. and Jiang, S. P. Studies on the rate of diffusion-controlled reactions of enzymes, Scientia Sinica 17, 664–680, 1974.
  • Chou, K. C., Li, T. T. and Forsen, S. The critical spherical shell in enzymatic fast reaction systems, Biophysical Chemistry 12, 265–269, 1980.
  • Chou, K. C. and Zhou, G. P. Role of the protein outside active site on the diffusion-controlled reaction of enzyme, Journal of American Chemical Society 104, 1409–1413, 1982.
  • Kipriyanov, I. A. Fourier Bessel transforms and imbedding theorems for weight classes, Trudy Math. Inst. Steklov 89, 130–213, 1967 (Russian); translated as Proc. Steklov Inst. Math. 89 1967, 149–246, 1968.
  • Kipriyanov, I. A. Boundary-value problems for partial differential equations with the Bessel differential operator(Russian), Doklady Acad. Nauk USSR 158 (2), 274–278, 1964.
  • Levitan, B. M. Expansion in Fourier series and integrals with Bessel functions, Uspeki Mat. Nauka (N.S) 6 2 (42), 102–143, 1951 (in Russian).
  • Nonlaopon, K. and Kananthai, A. On the ultra-hyperbolic heat kernel, International Journal of Applied Mathematics 17, 19–28, 2004.
  • Nonlaopon, K. and Kananthai, A. On the ultra-hyperbolic heat kernel related to the spectrum, International Journal of Pure and Applied Mathematics 13, 215–25, 2003.
  • Nonlaopon, K. and Kananthai, A. On the generalized ultra-hyperbolic heat kernel related to the spectrum, Science Asia 32, 21–24, 2006.
  • Saglam, A., Yildirim, H. and Sarikaya, M. Z. On the Bessel heat equation related to the Bessel diamond operator, Acta Appl. Math. 109, 849–860, 2010.
  • Saglam, A., Yildirim, H. and Sarikaya, M. Z. On the Bessel ultra-hyperbolic heat equation, Thai Journal of Mathematics 8 (1), 149–159, 2010.
  • Sarıkaya, M. Z. On the elemantary solution of the Bessel diamond operator (Ph.D. Thesis, Afyon Kocatepe University, 2007).
  • Sarıkaya, M. Z. and Yıldırım, H. On the Bessel diamond and the nonlinear Bessel diamond operator related to the Bessel wave equation, Nonlinear Analysis 68, 430–442, 2008.
  • Sarıkaya, M. Z. and Yıldırım, H. On the weak solutions of the compound Bessel ultra- hyperbolic equation, Applied Mathematics and Computation 189, 910–917, 2007.
  • Yıldırım H. Riesz potentials generated by a generalized shift operator (Ph.D. Thesis, Ankara University, 1995).
  • Yıldırım, H. and Sarıkaya, M. Z. On the generalized Riesz type potentials, Jour. Inst. Math. Comp. Sci. 14 (3), 217–224, 2001.
  • Yıldırım, H., Sarıkaya M. Z. and ¨Ozt¨urk S. The solutions of the n-dimensional Bessel diamond operator and the Fourier-Bessel transform of their convolution, Proc. Indian Acad. Sci. (Math. Sci.) 114 (4), 375–387, 2004.
  • Zhou, G. Influences of Van der Waals’ force upon diffusioncontrolled reaction rate, Sci. Sinica. 22, 845–858, 1979.
  • Zhou, Z. P., Li, T. T. and Chou, K. C. The flexibility during the juxtaposition of reacting groups and the upper limits of enzyme reactions, Biophysical Chemistry 14, 277–281, 1982. [21] Zhou, G. Q. and Zhong, W. Z. Diffusion-controlled reactions of enzymes. A comparison between Chou’s model and Alberty-Hammes-Eigen’s model, Eur J Biochem 128, 383–387, 1982.
There are 20 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Mathematics
Authors

Aziz Sağlam This is me

 hüseyin Yıldırım This is me

Publication Date February 1, 2011
Published in Issue Year 2011 Volume: 40 Issue: 2

Cite

APA Sağlam, A., & Yıldırım, . (2011). ON THE GENERALIZED BESSEL HEAT EQUATION RELATED TO THE GENERALIZED BESSEL DIAMOND OPERATOR. Hacettepe Journal of Mathematics and Statistics, 40(2), 179-189.
AMA Sağlam A, Yıldırım . ON THE GENERALIZED BESSEL HEAT EQUATION RELATED TO THE GENERALIZED BESSEL DIAMOND OPERATOR. Hacettepe Journal of Mathematics and Statistics. February 2011;40(2):179-189.
Chicago Sağlam, Aziz, and  hüseyin Yıldırım. “ON THE GENERALIZED BESSEL HEAT EQUATION RELATED TO THE GENERALIZED BESSEL DIAMOND OPERATOR”. Hacettepe Journal of Mathematics and Statistics 40, no. 2 (February 2011): 179-89.
EndNote Sağlam A, Yıldırım  (February 1, 2011) ON THE GENERALIZED BESSEL HEAT EQUATION RELATED TO THE GENERALIZED BESSEL DIAMOND OPERATOR. Hacettepe Journal of Mathematics and Statistics 40 2 179–189.
IEEE A. Sağlam and  . Yıldırım, “ON THE GENERALIZED BESSEL HEAT EQUATION RELATED TO THE GENERALIZED BESSEL DIAMOND OPERATOR”, Hacettepe Journal of Mathematics and Statistics, vol. 40, no. 2, pp. 179–189, 2011.
ISNAD Sağlam, Aziz - Yıldırım, hüseyin. “ON THE GENERALIZED BESSEL HEAT EQUATION RELATED TO THE GENERALIZED BESSEL DIAMOND OPERATOR”. Hacettepe Journal of Mathematics and Statistics 40/2 (February 2011), 179-189.
JAMA Sağlam A, Yıldırım . ON THE GENERALIZED BESSEL HEAT EQUATION RELATED TO THE GENERALIZED BESSEL DIAMOND OPERATOR. Hacettepe Journal of Mathematics and Statistics. 2011;40:179–189.
MLA Sağlam, Aziz and  hüseyin Yıldırım. “ON THE GENERALIZED BESSEL HEAT EQUATION RELATED TO THE GENERALIZED BESSEL DIAMOND OPERATOR”. Hacettepe Journal of Mathematics and Statistics, vol. 40, no. 2, 2011, pp. 179-8.
Vancouver Sağlam A, Yıldırım . ON THE GENERALIZED BESSEL HEAT EQUATION RELATED TO THE GENERALIZED BESSEL DIAMOND OPERATOR. Hacettepe Journal of Mathematics and Statistics. 2011;40(2):179-8.