Research Article
BibTex RIS Cite

OSCILLATION OF CUSPED EULER-BERNOULLI BEAMS AND KIRCHHOFF-LOVE PLATES

Year 2006, Volume: 35 Issue: 1, 7 - 53, 01.01.2006

Abstract

In this paper, mathematical problems of cusped Euler-Bernoulli beams and Kirchhoff-Love plates are considered. Changes in the beam crosssection area and the plate thickness are, in general, of non-power type. The criteria of admissibility of the classical bending boundary conditions [clamped end (edge), sliding clamped end (edge), and supported end (edge)] at the cusped end of the beam and on the cusped edge of the plate have been established. The cusped end of the beam and the cusped edge of the plate can always be free independent of the
character of the sharpening. A sufficient conditions for the solvability of the vibration frequency have been established. The appropriate weighted Sobolev spaces have been constructed. The well-posedness of the admissible problems has been proved by means of the Lax-Milgram theorem. 

References

  • Bitsadze, A. V. Mixed-Type Equations ((in Russian) Moscow, 1959 ).
  • Donnel, L. H. Beams, Plates, and Shells (McGraw-Hill Book Company, 1976).
  • Jaiani, G. V. On the deflections of thin wedge-shapped shells, Bulletin of the Academy of Sciences of the Georgian Republic 65 (3) (in Russian), 543–546, 1972.
  • Jaiani, G. V. Elastic bodies with non-smooth boundaries-cusped plates and shells, ZAMM 76Suppl. 2, 117–120, 1996.
  • Jaiani, G. V. Initial and Boundary Value Problems for Singular Differential Equations and Applications to the Theory of Cusped Bars and Plates, ISAAC Serials Vol. 6, Eds.: H. Begehr, O. Celebi, W. Tutschke, Kluwer, Dordrecht, 113–149, 1999.
  • Jaiani, G. V. On a mathematical model of bars with variable rectangular cross-sections, ZAMM-Zeitschrift fuer Angewandte Mathematik und Mechanik 81 (3), 147–173, 2001.
  • Jaiani, G. V. Bending of an orthotropic cusped plate, Applied Mathematics and Informa- tioncs 4 (1), 29–65, 1999.
  • Keldysh, M. V. On Some Cases of Degeneration of an Equation of Elliptic Type on the Domain Boundary, DAN SSSR 77 (2), 181–183, 1951.
  • Kharibegashvili, S. S. and Jaiani, G. V. Dynamical Problems in the (0,0) and (1,0) Approx- imations of a Mathematical Model of Cusped Bars, Proceedings of the International Graz Workshop, Functional-Analytic and Complex Methods, Interactions, and Applications to Partial Differential Equations, World Scientific, 188–248, 2001.
  • Khvoles, A. R. The general representation for solutions of equilibrium equations of prismatic shell with variable thickness, Seminar of the Institute of Applied Mathematics of Tbilisi State University, Annot. of Reports 5 (in Russian), 19–21, 1971.
  • Kiguradze, I. T. and Shekhter, B. L. Singular Boundary Value Problems for Ordinary Dif- ferential Equations of the Second Order (Itogi Nauki i Tekhniki, Ser. Sovrem. Probl. Mat., Nov. Dost., 30 (in Russian), (Moscow, 1987).
  • Kufner, A. Weighted Sobolev Spaces (John Wiley & Sons, 1985).
  • Kufner, A. and Opic, B. How to define reasonably weighted sobolev spaces, Commentations Mathematicae Universitatis Carolinae 25 (3), 537–554, 1984.
  • Mikhlin, S. G. Variational Methods in Mathematical Physics ((in Russian) Nauka, Moscow, 1970).
  • Naguleswaran, S. The vibration of a “complete” Euler-Bernoulli beam of constant depth and breadth proportional to axial coordinate raised to a positive exponent. J. Sound Vib. 187(2), 311–327, 1995.
  • Nikolskii, S. M. Approximation of Functions of Several Variables and Embedding theorems ((in Russian) Moscow, 1977).
  • Nikolskii, S. M. and Lizorkin, P. I. On some inequalities for functions from weighted classes and on boundary value problems with strong degeneration of the boundary, DAN, SSSR 195(3), 512–515, 1964.
  • Nikolskii, S. M., Lizorkin, P. I. and Miroshin, N. V. Weighted functional spaces and their ap- plications to the investigation of boundary value problems for degenerate elliptic equations, Izvestia Vysshikh Uchebnykh Zavedenii 8 (315) (in Russian), 4–30, 1988.
  • Opic, B. and Kufner, A. Hardy-Type Inequalities, 1992.
  • Tricomi, F. G. Ricerche di Ingeneria (Marzo-Aprile 1936-XIV).
  • Timoshenko, S. and Woinowsky-Krieger, S. Theory of Plates and Shells (McGraw-Hill, Book Company, New York-Toronto-London, 1959).
  • Uzunov, S. G. Estimate of convergence of the finite element method for a degenerate differ- ential equation, (in collection: Boundary Value Problems for Non-linear Equations, Novosi- birsk (in Russian), 68–74, 1982).
  • Vekua, I. N. On a way of calculating of prismatic shells. Proceedings of A. Razmadze Insti- tute of Mathematics of Georgian Academy of Sciences 21 (in Russian), 191–259, 1955.
  • Vekua, I. N. The theory of thin shallow shells of variable thickness, Proceedings of A. Razmadze Institute of Mathematics of Georgian Academy of Sciences 30 (in Russian), 5–103, 1965.
  • Vekua, I. N. Shell Theory: General Methods of Construction (Pitman Advanced Publishing Program, Boston-London-Melbourne, 1985).

OSCILLATION OF CUSPED EULER-BERNOULLI BEAMS AND KIRCHHOFF-LOVE PLATES

Year 2006, Volume: 35 Issue: 1, 7 - 53, 01.01.2006

Abstract

References

  • Bitsadze, A. V. Mixed-Type Equations ((in Russian) Moscow, 1959 ).
  • Donnel, L. H. Beams, Plates, and Shells (McGraw-Hill Book Company, 1976).
  • Jaiani, G. V. On the deflections of thin wedge-shapped shells, Bulletin of the Academy of Sciences of the Georgian Republic 65 (3) (in Russian), 543–546, 1972.
  • Jaiani, G. V. Elastic bodies with non-smooth boundaries-cusped plates and shells, ZAMM 76Suppl. 2, 117–120, 1996.
  • Jaiani, G. V. Initial and Boundary Value Problems for Singular Differential Equations and Applications to the Theory of Cusped Bars and Plates, ISAAC Serials Vol. 6, Eds.: H. Begehr, O. Celebi, W. Tutschke, Kluwer, Dordrecht, 113–149, 1999.
  • Jaiani, G. V. On a mathematical model of bars with variable rectangular cross-sections, ZAMM-Zeitschrift fuer Angewandte Mathematik und Mechanik 81 (3), 147–173, 2001.
  • Jaiani, G. V. Bending of an orthotropic cusped plate, Applied Mathematics and Informa- tioncs 4 (1), 29–65, 1999.
  • Keldysh, M. V. On Some Cases of Degeneration of an Equation of Elliptic Type on the Domain Boundary, DAN SSSR 77 (2), 181–183, 1951.
  • Kharibegashvili, S. S. and Jaiani, G. V. Dynamical Problems in the (0,0) and (1,0) Approx- imations of a Mathematical Model of Cusped Bars, Proceedings of the International Graz Workshop, Functional-Analytic and Complex Methods, Interactions, and Applications to Partial Differential Equations, World Scientific, 188–248, 2001.
  • Khvoles, A. R. The general representation for solutions of equilibrium equations of prismatic shell with variable thickness, Seminar of the Institute of Applied Mathematics of Tbilisi State University, Annot. of Reports 5 (in Russian), 19–21, 1971.
  • Kiguradze, I. T. and Shekhter, B. L. Singular Boundary Value Problems for Ordinary Dif- ferential Equations of the Second Order (Itogi Nauki i Tekhniki, Ser. Sovrem. Probl. Mat., Nov. Dost., 30 (in Russian), (Moscow, 1987).
  • Kufner, A. Weighted Sobolev Spaces (John Wiley & Sons, 1985).
  • Kufner, A. and Opic, B. How to define reasonably weighted sobolev spaces, Commentations Mathematicae Universitatis Carolinae 25 (3), 537–554, 1984.
  • Mikhlin, S. G. Variational Methods in Mathematical Physics ((in Russian) Nauka, Moscow, 1970).
  • Naguleswaran, S. The vibration of a “complete” Euler-Bernoulli beam of constant depth and breadth proportional to axial coordinate raised to a positive exponent. J. Sound Vib. 187(2), 311–327, 1995.
  • Nikolskii, S. M. Approximation of Functions of Several Variables and Embedding theorems ((in Russian) Moscow, 1977).
  • Nikolskii, S. M. and Lizorkin, P. I. On some inequalities for functions from weighted classes and on boundary value problems with strong degeneration of the boundary, DAN, SSSR 195(3), 512–515, 1964.
  • Nikolskii, S. M., Lizorkin, P. I. and Miroshin, N. V. Weighted functional spaces and their ap- plications to the investigation of boundary value problems for degenerate elliptic equations, Izvestia Vysshikh Uchebnykh Zavedenii 8 (315) (in Russian), 4–30, 1988.
  • Opic, B. and Kufner, A. Hardy-Type Inequalities, 1992.
  • Tricomi, F. G. Ricerche di Ingeneria (Marzo-Aprile 1936-XIV).
  • Timoshenko, S. and Woinowsky-Krieger, S. Theory of Plates and Shells (McGraw-Hill, Book Company, New York-Toronto-London, 1959).
  • Uzunov, S. G. Estimate of convergence of the finite element method for a degenerate differ- ential equation, (in collection: Boundary Value Problems for Non-linear Equations, Novosi- birsk (in Russian), 68–74, 1982).
  • Vekua, I. N. On a way of calculating of prismatic shells. Proceedings of A. Razmadze Insti- tute of Mathematics of Georgian Academy of Sciences 21 (in Russian), 191–259, 1955.
  • Vekua, I. N. The theory of thin shallow shells of variable thickness, Proceedings of A. Razmadze Institute of Mathematics of Georgian Academy of Sciences 30 (in Russian), 5–103, 1965.
  • Vekua, I. N. Shell Theory: General Methods of Construction (Pitman Advanced Publishing Program, Boston-London-Melbourne, 1985).
There are 25 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Mathematics
Authors

G. V. Jaiani This is me

A. Kufner This is me

Publication Date January 1, 2006
Published in Issue Year 2006 Volume: 35 Issue: 1

Cite

APA Jaiani, G. V., & Kufner, A. (2006). OSCILLATION OF CUSPED EULER-BERNOULLI BEAMS AND KIRCHHOFF-LOVE PLATES. Hacettepe Journal of Mathematics and Statistics, 35(1), 7-53.
AMA Jaiani GV, Kufner A. OSCILLATION OF CUSPED EULER-BERNOULLI BEAMS AND KIRCHHOFF-LOVE PLATES. Hacettepe Journal of Mathematics and Statistics. January 2006;35(1):7-53.
Chicago Jaiani, G. V., and A. Kufner. “OSCILLATION OF CUSPED EULER-BERNOULLI BEAMS AND KIRCHHOFF-LOVE PLATES”. Hacettepe Journal of Mathematics and Statistics 35, no. 1 (January 2006): 7-53.
EndNote Jaiani GV, Kufner A (January 1, 2006) OSCILLATION OF CUSPED EULER-BERNOULLI BEAMS AND KIRCHHOFF-LOVE PLATES. Hacettepe Journal of Mathematics and Statistics 35 1 7–53.
IEEE G. V. Jaiani and A. Kufner, “OSCILLATION OF CUSPED EULER-BERNOULLI BEAMS AND KIRCHHOFF-LOVE PLATES”, Hacettepe Journal of Mathematics and Statistics, vol. 35, no. 1, pp. 7–53, 2006.
ISNAD Jaiani, G. V. - Kufner, A. “OSCILLATION OF CUSPED EULER-BERNOULLI BEAMS AND KIRCHHOFF-LOVE PLATES”. Hacettepe Journal of Mathematics and Statistics 35/1 (January 2006), 7-53.
JAMA Jaiani GV, Kufner A. OSCILLATION OF CUSPED EULER-BERNOULLI BEAMS AND KIRCHHOFF-LOVE PLATES. Hacettepe Journal of Mathematics and Statistics. 2006;35:7–53.
MLA Jaiani, G. V. and A. Kufner. “OSCILLATION OF CUSPED EULER-BERNOULLI BEAMS AND KIRCHHOFF-LOVE PLATES”. Hacettepe Journal of Mathematics and Statistics, vol. 35, no. 1, 2006, pp. 7-53.
Vancouver Jaiani GV, Kufner A. OSCILLATION OF CUSPED EULER-BERNOULLI BEAMS AND KIRCHHOFF-LOVE PLATES. Hacettepe Journal of Mathematics and Statistics. 2006;35(1):7-53.