Research Article
BibTex RIS Cite
Year 2023, Volume: 52 Issue: 4, 995 - 1005, 15.08.2023
https://doi.org/10.15672/hujms.1187220

Abstract

References

  • [1] A. J. C. Barré de Saint-Venant, Mémoire sur les lignes courbes non planes, Journ. Ec. Polyt. 30, 1–76, 1846.
  • [2] B. Y. Chen, When does the position vector of a space curve always lie in its rectifying plane?, Amer. Math. Monthly 110, 147–152, 2003.
  • [3] B. Y. Chen, Differential geometry of rectifying submanifolds, Int. Electron. J. Geom. 9, 1–8, 2016.
  • [4] B. Y. Chen, Rectifying curves and geodesics on a cone in the Euclidean 3-space, Tamkang J. Math. 48, 209–214, 2017.
  • [5] M. Crampin, Concircular vector fields and special conformal Killing tensors, in: Differential Geometric Methods in Mechanics and Field Theory, 57–70, Academia Press, Gent, 2007.
  • [6] A. J. Di Scala and G. Ruiz-Hernández, Helix submanifolds of Euclidean spaces, Monasth Math. 157, 205–215, 2009.
  • [7] A. Fialkow, Conformals geodesics, Trans. Amer. Math. Soc. 45 (3), 443–473, 1939.
  • [8] S. Izumiya and N. Takeuchi, New special curves and developable surfaces, Turk. J. Math. 28, 153–163, 2004.
  • [9] I. B. Kim, Special concircular vector fields in Riemannian manifolds, Hirosima Math. J. 12, 77–91, 1982.
  • [10] P. Lucas and J. A. Ortega-Yagües, Slant helices in the Euclidean 3-space revisited, Bull. Belg. Math. Soc. Simon Stevin 23, 133–150, 2016.
  • [11] M. I. Munteanu, From golden spirals to constant slope surfaces, J. Math. Phys. 51, 073507, 2010.
  • [12] P. D. Scofield, Curves of constant precession, Amer. Math. Monthly 102, 531–537, 1995.
  • [13] D. J. Struik, Lectures on Classical Differential Geometry, Dover, New York, 1988.
  • [14] K. Yano, Concircular geometry I, concircular transformations, Proc. Imp. Acad. Tokyo 16, 195–200, 1940.

Concircular helices and concircular surfaces in Euclidean 3-space $\mathbb{R}^{3}$

Year 2023, Volume: 52 Issue: 4, 995 - 1005, 15.08.2023
https://doi.org/10.15672/hujms.1187220

Abstract

In this paper we characterize concircular helices in $\mathbb{R}^{3}$ by means of a differential equation involving their curvature and torsion. We find a full description of concircular surfaces in $\mathbb{R}^{3}$ as a special family of ruled surfaces, and we show that $M\subset\mathbb{R}^{3}$ is a proper concircular surface if and only if either $M$ is parallel to a conical surface or $M$ is the normal surface to a spherical curve. Finally, we characterize the concircular helices as geodesics of concircular surfaces.

References

  • [1] A. J. C. Barré de Saint-Venant, Mémoire sur les lignes courbes non planes, Journ. Ec. Polyt. 30, 1–76, 1846.
  • [2] B. Y. Chen, When does the position vector of a space curve always lie in its rectifying plane?, Amer. Math. Monthly 110, 147–152, 2003.
  • [3] B. Y. Chen, Differential geometry of rectifying submanifolds, Int. Electron. J. Geom. 9, 1–8, 2016.
  • [4] B. Y. Chen, Rectifying curves and geodesics on a cone in the Euclidean 3-space, Tamkang J. Math. 48, 209–214, 2017.
  • [5] M. Crampin, Concircular vector fields and special conformal Killing tensors, in: Differential Geometric Methods in Mechanics and Field Theory, 57–70, Academia Press, Gent, 2007.
  • [6] A. J. Di Scala and G. Ruiz-Hernández, Helix submanifolds of Euclidean spaces, Monasth Math. 157, 205–215, 2009.
  • [7] A. Fialkow, Conformals geodesics, Trans. Amer. Math. Soc. 45 (3), 443–473, 1939.
  • [8] S. Izumiya and N. Takeuchi, New special curves and developable surfaces, Turk. J. Math. 28, 153–163, 2004.
  • [9] I. B. Kim, Special concircular vector fields in Riemannian manifolds, Hirosima Math. J. 12, 77–91, 1982.
  • [10] P. Lucas and J. A. Ortega-Yagües, Slant helices in the Euclidean 3-space revisited, Bull. Belg. Math. Soc. Simon Stevin 23, 133–150, 2016.
  • [11] M. I. Munteanu, From golden spirals to constant slope surfaces, J. Math. Phys. 51, 073507, 2010.
  • [12] P. D. Scofield, Curves of constant precession, Amer. Math. Monthly 102, 531–537, 1995.
  • [13] D. J. Struik, Lectures on Classical Differential Geometry, Dover, New York, 1988.
  • [14] K. Yano, Concircular geometry I, concircular transformations, Proc. Imp. Acad. Tokyo 16, 195–200, 1940.
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Pascual Lucas 0000-0002-4354-9736

José Antonio Ortega Yagües 0000-0001-9521-1051

Publication Date August 15, 2023
Published in Issue Year 2023 Volume: 52 Issue: 4

Cite

APA Lucas, P., & Ortega Yagües, J. A. (2023). Concircular helices and concircular surfaces in Euclidean 3-space $\mathbb{R}^{3}$. Hacettepe Journal of Mathematics and Statistics, 52(4), 995-1005. https://doi.org/10.15672/hujms.1187220
AMA Lucas P, Ortega Yagües JA. Concircular helices and concircular surfaces in Euclidean 3-space $\mathbb{R}^{3}$. Hacettepe Journal of Mathematics and Statistics. August 2023;52(4):995-1005. doi:10.15672/hujms.1187220
Chicago Lucas, Pascual, and José Antonio Ortega Yagües. “Concircular Helices and Concircular Surfaces in Euclidean 3-Space $\mathbb{R}^{3}$”. Hacettepe Journal of Mathematics and Statistics 52, no. 4 (August 2023): 995-1005. https://doi.org/10.15672/hujms.1187220.
EndNote Lucas P, Ortega Yagües JA (August 1, 2023) Concircular helices and concircular surfaces in Euclidean 3-space $\mathbb{R}^{3}$. Hacettepe Journal of Mathematics and Statistics 52 4 995–1005.
IEEE P. Lucas and J. A. Ortega Yagües, “Concircular helices and concircular surfaces in Euclidean 3-space $\mathbb{R}^{3}$”, Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 4, pp. 995–1005, 2023, doi: 10.15672/hujms.1187220.
ISNAD Lucas, Pascual - Ortega Yagües, José Antonio. “Concircular Helices and Concircular Surfaces in Euclidean 3-Space $\mathbb{R}^{3}$”. Hacettepe Journal of Mathematics and Statistics 52/4 (August 2023), 995-1005. https://doi.org/10.15672/hujms.1187220.
JAMA Lucas P, Ortega Yagües JA. Concircular helices and concircular surfaces in Euclidean 3-space $\mathbb{R}^{3}$. Hacettepe Journal of Mathematics and Statistics. 2023;52:995–1005.
MLA Lucas, Pascual and José Antonio Ortega Yagües. “Concircular Helices and Concircular Surfaces in Euclidean 3-Space $\mathbb{R}^{3}$”. Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 4, 2023, pp. 995-1005, doi:10.15672/hujms.1187220.
Vancouver Lucas P, Ortega Yagües JA. Concircular helices and concircular surfaces in Euclidean 3-space $\mathbb{R}^{3}$. Hacettepe Journal of Mathematics and Statistics. 2023;52(4):995-1005.