Research Article
BibTex RIS Cite
Year 2023, Volume: 52 Issue: 5, 1303 - 1348, 31.10.2023
https://doi.org/10.15672/hujms.1134334

Abstract

References

  • [1] J. Abrevaya and W. Jiang, A nonparametric approach to measuring and testing curvature, J. Bus. Econom. Statist. 23 (1), 1-19, 2005.
  • [2] H. Akaike, An approximation to the density function, Ann. Inst. Statist. Math., Tokyo 6, 127–132, 1954.
  • [3] M.A. Arcones, The law of the iterated logarithm for U-processes, J. Multivariate Anal. 47 (1), 139–151, 1993.
  • [4] M.A. Arcones and E. Giné, Limit theorems for U-processes, Ann. Probab. 21 (3), 1494–1542, 1993.
  • [5] M.A. Arcones and Y. Wang, Some new tests for normality based on U-processes, Statist. Probab. Lett. 76 (1), 69–82, 2006.
  • [6] K. Benhenni, F. Ferraty, M. Rachdi, and P. Vieu. Local smoothing regression with functional data, Comput. Statist. 22 (3), 353–369, 2007.
  • [7] W. Bergsma and A. Dassios, A consistent test of independence based on a sign covariance related to Kendall’s tau, Bernoulli 20 (2), 1006–1028, 2014.
  • [8] J. R. Blum, J. Kiefer, and M. Rosenblatt, Distribution free tests of independence based on the sample distribution function, Ann. Math. Statist. 32, 485–498, 1961.
  • [9] S. Borovkova, R. Burton, and H. Dehling, Consistency of the Takens estimator for the correlation dimension, Ann. Appl. Probab. 9 (2), 376–390, 1999.
  • [10] S. Bouzebda, Some new multivariate tests of independence, Math. Methods Statist. 20 (3), 192–205, 2011.
  • [11] S. Bouzebda, On the strong approximation of bootstrapped empirical copula processes with applications, Math. Methods Statist. 21 (3), 153–188, 2012.
  • [12] S. Bouzebda and T. Zari, Asymptotic behavior of weighted multivariate Cramér-von Mises-type statistics under contiguous alternatives, Math. Methods Statist. 22 (3), 226– 252, 2013.
  • [13] S. Bouzebda, Bootstrap de l’estimateur de Hill: théorèmes limites, Ann. I.S.U.P. 54 (1-2), 61–72, 2010.
  • [14] S. Bouzebda, Strong approximation of the smoothed Q-Q processes, East J. Theor. Stat. 31 (2), 169–191, 2010.
  • [15] S. Bouzebda, General tests of independence based on empirical processes indexed by functions, Stat. Methodol. 21, 59–87, 2014.
  • [16] S. Bouzebda, Kac’s representation for empirical copula process from an asymptotic viewpoint, Statist. Probab. Lett. 123, 107–113, 2017.
  • [17] S. Bouzebda and M. Cherfi, Test of symmetry based on copula function, J. Statist. Plann. Inference 142 (5), 1262–1271, 2012.
  • [18] S. Bouzebda and T. El-hadjali, Uniform convergence rate of the kernel regression estimator adaptive to intrinsic dimension in presence of censored data, J. Nonparametr. Stat. 32 (4), 864–914, 2020.
  • [19] S. Bouzebda and I. Elhattab, A strong consistency of a nonparametric estimate of entropy under random censorship, C. R. Math. Acad. Sci. Paris 347 (13-14), 821–826, 2009.
  • [20] S. Bouzebda and I. Elhattab, Uniform in bandwidth consistency of the kernel-type estimator of the Shannon’s entropy, C. R. Math. Acad. Sci. Paris 348 (5-6), 317–321, 2010.
  • [21] S. Bouzebda and I. Elhattab, Uniform-in-bandwidth consistency for kernel-type estimators of Shannon’s entropy, Electron. J. Stat. 5, 440–459, 2011.
  • [22] S. Bouzebda, I. Elhattab and B. Nemouchi, On the uniform-in-bandwidth consistency of the general conditional U-statistics based on the copula representation, J. Nonparametr. Stat. 33 (2), 321–358, 2021.
  • [23] S. Bouzebda, I. Elhattab and C.T. Seck, Uniform in bandwidth consistency of nonparametric regression based on copula representation, Statist. Probab. Lett. 137, 173–182, 2018.
  • [24] S. Bouzebda and A. Keziou, New estimates and tests of independence in semiparametric copula models, Kybernetika (Prague) 46 (1), 178–201, 2010.
  • [25] S. Bouzebda and A. Keziou, A new test procedure of independence in copula models via χ2-divergence, Comm. Statist. Theory Methods 39 (1-2), 1–20, 2010.
  • [26] S. Bouzebda and N. Limnios, Exchangeably weighted bootstraps of empirical estimators of a semi-Markov kernel, C. R. Math. Acad. Sci. Paris 351 (13-14), 569–573, 2013.
  • [27] S. Bouzebda and N. Limnios, Exchangeably weighted bootstraps of martingale difference arrays under the uniformly integrable entropy, J. Stoch. Anal. 1 (3), Art. 6, 13, 2020.
  • [28] S. Bouzebda and B. Nemouchi, Uniform consistency and uniform in bandwidth consistency for nonparametric regression estimates and conditional U-statistics involving functional data, J. Nonparametr. Stat. 32 (2), 452–509, 2020.
  • [29] S. Bouzebda and B. Nemouchi, Weak-convergence of empirical conditional processes and conditional U-processes involving functional mixing data, Stat. Inference Stoch. Process. 26 (1), 33–88, 2023.
  • [30] S. Bouzebda and A. Nezzal, Uniform consistency and uniform in number of neighbors consistency for nonparametric regression estimates and conditional U-statistics involving functional data, Jpn. J. Stat. Data Sci. 5 (2), 431–533, 2022.
  • [31] S. Bouzebda and A. Nezzal, Asymptotic properties of conditional U-statistics using delta sequences. Comm. Statist. Theory Methods, pages 1–56, 2023.
  • [32] S. Bouzebda, A. Nezzal and T. Zari, Uniform consistency for functional conditional u-statistics using delta-sequences, Mathematics 11 (1), 1–39, 2023.
  • [33] S. Bouzebda, C. Papamichail and N. Limnios, On a multidimensional general bootstrap for empirical estimator of continuous-time semi-Markov kernels with applications, J. Nonparametr. Stat. 30 (1), 49–86, 2018.
  • [34] S. Bouzebda and I. Soukarieh, Non-parametric conditional U-processes for locally stationary functional random fields under stochastic sampling design, Mathematics 11(1), 1–70, 2023.
  • [35] S. Bouzebda and I. Soukarieh, Renewal type bootstrap for U-process Markov chains, Markov Process. Related Fields, 1–52, 2023.
  • [36] S. Bouzebda and N. Taachouche, On the variable bandwidth kernel estimation of conditional U-statistics at optimal rates in sup-norm, Phys. A 625, Paper No. 129000, 2023.
  • [37] S. Bouzebda and N. Taachouche, Rates of the strong uniform consistency for the kernel-type regression function estimators with general kernels on manifolds, Math. Methods Statist. 32 (1), 27–80, 2023.
  • [38] T. T. Cai and L. Zhang, High-dimensional Gaussian copula regression: adaptive estimation and statistical inference, Statist. Sinica 28 (2), 963–993, 2018.
  • [39] A. Carbonez, L. Györfi and E.C. van der Meulen, Partitioning-estimates of a regression function under random censoring, Statist. Decisions 13 (1), 21–37, 1995.
  • [40] J. E. Chacón, J. Montanero and A.G. Nogales, A note on kernel density estimation at a parametric rate, J. Nonparametr. Stat. 19 (1), 13–21, 2007.
  • [41] J.E. Chacón and T. Duong, Multivariate kernel smoothing and its applications, volume 160 of Monographs on Statistics and Applied Probability, CRC Press, Boca Raton, FL, 2018.
  • [42] S.X. Chen and T-M. Huang, Nonparametric estimation of copula functions for dependence modelling, Canad. J. Statist. 35 (2), 265–282, 2007.
  • [43] U. Cherubini, F. Gobbi and S. Mulinacci, Convolution Copula Econometrics, SpringerBriefs in Statistics. Springer, Cham, 2016.
  • [44] U. Cherubini, E. Luciano and W. Vecchiato, Copula Methods in Finance, Wiley Finance Series. John Wiley & Sons, Ltd., Chichester, 2004.
  • [45] K. Chokri and S. Bouzebda, Uniform-in-bandwidth consistency results in the partially linear additive model components estimation, Comm. Statist. Theory Methods, 1–42, 2023.
  • [46] K,-L. Chung, An estimate concerning the Kolmogoroff limit distribution, Trans. Amer. Math. Soc. 67, 36–50, 1949.
  • [47] S. Clémençon, G. Lugosi and N. Vayatis, Ranking and empirical minimization of U-statistics, Ann. Statist. 36 (2), 844–874, 2008.
  • [48] M. Csörgő and P.Révész, Strong Approximations in Probability and Statistics, Probability and Mathematical Statistics. Academic Press, Inc, [Harcourt Brace Jovanovich, Publishers], New York-London, 1981.
  • [49] G. Dall’Aglio, S. Kotz and G. Salinetti, editors, Advances in probability distributions with given marginals, volume 67 of Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1991. Beyond the copulas, Papers from the Symposium on Distributions with Given Marginals held in Rome, April 1990.
  • [50] V.H. de la Peña and E. Giné, Decoupling, From dependence to independence, Randomly stopped processes. U-statistics and processes. Martingales and beyond, Probability and its Applications (New York). Springer-Verlag, New York, 1999.
  • [51] P. Deheuvels, One bootstrap suffices to generate sharp uniform bounds in functional estimation, Kybernetika (Prague) 47 (6), 855–865, 2011.
  • [52] P. Deheuvels and J. H.J. Einmahl, Functional limit laws for the increments of Kaplan- Meier product-limit processes and applications, Ann. Probab. 28 (3), 1301–1335, 2000.
  • [53] P. Deheuvels and D.M. Mason, General asymptotic confidence bands based on kerneltype function estimators, Stat. Inference Stoch. Process. 7 (3), 225–277, 2004.
  • [54] H. Dette, R. Van Hecke and S. Volgushev, Some comments on copula-based regression, J. Amer. Statist. Assoc. 109 (507), 1319–1324, 2014.
  • [55] L. Devroye and G. Lugosi, Combinatorial Methods in Density Estimation, Springer Series in Statistics. Springer-Verlag, New York, 2001.
  • [56] J. Dony and D.M. Mason, Uniform in bandwidth consistency of conditional Ustatistics, Bernoulli 14 (4), 1108–1133, 2008.
  • [57] R.M. Dudley, A course on empirical processes. In École d’été de probabilités de Saint- Flour, XII—1982, volume 1097 of Lecture Notes in Math., pages 1–142. Springer, Berlin, 1984.
  • [58] R. M. Dudley, Uniform Central Limit Theorems, volume 142 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, New York, second edition, 2014.
  • [59] F. Durante and C. Sempi, Principles of copula theory. CRC Press, Boca Raton, FL, 2016.
  • [60] P.P.B. Eggermont and V.N. LaRiccia, Maximum penalized likelihood estimation., Vol. I. Springer Series in Statistics. Springer-Verlag, New York, 2001. Density estimation.
  • [61] U. Einmahl and D.M. Mason, An empirical process approach to the uniform consistency of kernel-type function estimators, J. Theoret. Probab. 13 (1), 1–37, 2000.
  • [62] U. Einmahl and D.M. Mason, Uniform in bandwidth consistency of kernel-type function estimators, Ann. Statist. 33 (3), 1380–1403, 2005.
  • [63] L. Faivishevsky and J. Goldberger, Ica based on a smooth estimation of the differential entropy. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Information Processing Systems 21., Curran Associates, Inc., 2008.
  • [64] J. Fan and I. Gijbels, Local polynomial modelling and its applications, volume 66 of Monographs on Statistics and Applied Probability, Chapman & Hall, London, 1996.
  • [65] J.D. Fermanian, D. Radulović and M. Wegkamp, Asymptotic total variation tests for copulas, Bernoulli 21 (3), 1911–1945, 2015.
  • [66] A. Földes and L. Rejtő, A LIL type result for the product limit estimator, Z. Wahrsch. Verw. Gebiete 56 (1), 75–86, 1981.
  • [67] E.W. Frees, Infinite order U-statistics, Scand. J. Statist. 16 (1), 29–45, 1989.
  • [68] E.W. Frees and E.A. Valdez, Understanding relationships using copulas, N. Am. Actuar. J. 2 (1), 1–25, 1998.
  • [69] J. Galambos, Order statistics of samples from multivariate distributions, J. Amer. Statist. Assoc. 70 (351, part 1), 674–680, 1975.
  • [70] J. Gao and I. Gijbels, Bandwidth selection in nonparametric kernel testing, J. Amer. Statist. Assoc. 103 (484), 1584–1594, 2008.
  • [71] C. Genest, A.K. Nikoloulopoulos, L.-P. Rivest and M. Fortin, Predicting dependent binary outcomes through logistic regressions and meta-elliptical copulas, Braz. J. Probab. Stat. 27 (3), 265–284, 2013.
  • [72] S. Ghosal, A. Sen and A.W. van der Vaart, Testing monotonicity of regression, Ann. Statist. 28 (4), 1054–1082, 2000.
  • [73] R.D. Gill and S. Johansen, A survey of product-integration with a view toward application in survival analysis, Ann. Statist. 18 (4), 1501–1555, 1990.
  • [74] E. Giné, V. Koltchinskii and J. Zinn, Weighted uniform consistency of kernel density estimators, Ann. Probab. 32 (3B):2570–2605, 2004.
  • [75] E. Giné and D. M. Mason, Laws of the iterated logarithm for the local U-statistic process, J. Theoret. Probab. 20 (3), 457–485, 2007.
  • [76] E. Giné and D.M. Mason, On local U-statistic processes and the estimation of densities of functions of several sample variables, Ann. Statist. 35 (3), 1105–1145, 2007.
  • [77] E.J. Gumbel, Bivariate exponential distributions, Journal of the American Statistical Association 55 (292), 698–707, 1960.
  • [78] L. Györfi, M. Kohler, A. Krzyżak and H. Walk, A distribution-free theory of nonparametric regression, Springer Series in Statistics, Springer-Verlag, New York, 2002.
  • [79] P. Hall, Asymptotic properties of integrated square error and cross-validation for kernel estimation of a regression function, Z. Wahrsch. Verw. Gebiete 67 (2), 175–196, 1984.
  • [80] P. Hall and J.S. Marron, Estimation of integrated squared density derivatives, Statist. Probab. Lett. 6 (2), 109–115, 1987.
  • [81] P.R. Halmos. The theory of unbiased estimation, Ann. Math. Statistics 17, 34–43, 1946.
  • [82] M. Harel and M.L. Puri, Conditional U-statistics for dependent random variables, J. Multivariate Anal. 57 (1), 84–100, 1996.
  • [83] C. Heilig and D. Nolan, Limit theorems for the infinite-degree U-process, Statist. Sinica 11 (1), 289–302, 2001.
  • [84] W. Hoeffding, A class of statistics with asymptotically normal distribution, Ann. Math. Statistics 19, 293–325, 1948.
  • [85] M. Hollander, D. Park and F. Proschan, Testing whether new is better than used of a specified age, with randomly censored data, Canad. J. Statist. 13 (1), 45–52, 1985.
  • [86] J.L. Horowitz and V.G. Spokoiny, An adaptive, rate-optimal test of a parametric mean-regression model against a nonparametric alternative, Econometrica 69 (3), 599– 631, 2001.
  • [87] J.Hüsler and R.D. Reiss, Maxima of normal random vectors: between independence and complete dependence, Statist. Probab. Lett. 7 (4), 283–286, 1989.
  • [88] P. Janssen, J. Swanepoel and N. Veraverbeke, Bernstein estimation for a copula derivative with application to conditional distribution and regression functionals, TEST 25 (2), 351–374, 2016.
  • [89] H. Joe, Multivariate models and dependence concepts, volume 73 of Monographs on Statistics and Applied Probability, Chapman & Hall, London, 1997.
  • [90] H. Joe, Dependence modeling with copulas, volume 134 of Monographs on Statistics and Applied Probability, CRC Press, Boca Raton, FL, 2015.
  • [91] E. Joly and G. Lugosi, Robust estimation of U-statistics, Stochastic Process. Appl. 126 (12), 3760–3773, 2016.
  • [92] M.C. Jones and D.F. Signorini, A comparison of higher-order bias kernel density estimators. J. Amer. Statist. Assoc. 92 (439), 1063–1073, 1997.
  • [93] E.L. Kaplan and P. Meier, Nonparametric estimation from incomplete observations, J. Amer. Statist. Assoc. 53, 457–481, 1958.
  • [94] M. Kohler, K. Máthé and M. Pintér, Prediction from randomly right censored data, J. Multivariate Anal. 80 (1), 73–100, 2002.
  • [95] N. Kolev and D. Paiva, Copula-based regression models: a survey, J. Statist. Plann. Inference 139 (11), 3847–3856, 2009.
  • [96] A.N. Kolmogorov and V.M. Tihomirov, ε-entropy and ε-capacity of sets in functional space, Amer. Math. Soc. Transl. (2) 17, 277–364, 1961.
  • [97] M.R. Kosorok, Introduction to empirical processes and semiparametric inference, Springer Series in Statistics, Springer, New York, 2008.
  • [98] F. Lad, G. Sanfilippo and G. Agrò, Extropy: complementary dual of entropy, Statist. Sci. 30 (1), 40–58, 2015.
  • [99] A.J. Lee, U-statistics, volume 110 of Statistics: Textbooks and Monographs, Marcel Dekker, Inc., New York, 1990, Theory and practice.
  • [100] S. Lee, O. Linton and Y.J. Whang, Testing for stochastic monotonicity, Econometrica 77 (2), 585–602, 2009.
  • [101] Y.K. Leong and E.A. Valdez, Claims prediction with dependence using copula models, North American Actuarial Journal, 2005.
  • [102] Q. Liu, J. Lee and M. Jordan, A kernelized stein discrepancy for goodness-of-fit tests, In Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of The 33rd International Conference on Machine Learning, volume 48 of Proceedings of Machine Learning Research, pages 276–284, New York, New York, USA, 20–22 Jun 2016. PMLR.
  • [103] B. Maillot and V. Viallon, Uniform limit laws of the logarithm for nonparametric estimators of the regression function in presence of censored data, Math. Methods Statist.
  • [104] D.M. Mason, Proving consistency of non-standard kernel estimators, Stat. Inference Stoch. Process. 15 (2), 151–176, 2012.
  • [105] D.M. Mason and J.W.H. Swanepoel, A general result on the uniform in bandwidth consistency of kernel-type function estimators, TEST 20 (1), 72–94, 2011.
  • [106] A.J. McNeil, R. Frey and P. Embrechts, Quantitative risk management, Princeton Series in Finance. Princeton University Press, Princeton, NJ, revised edition, 2015. Concepts, techniques and tools.
  • [107] È.A. Nadaraja, On a regression estimate, Teor. Verojatnost. i Primenen. 9 157–159, 1964.
  • [108] R.B. Nelsen, An introduction to copulas, Springer Series in Statistics, Springer, New York, second edition, 2006.
  • [109] H. Noh, A. El Ghouch and T. Bouezmarni, Copula-based regression estimation and inference, J. Amer. Statist. Assoc. 108 (502), 676–688, 2013.
  • [110] D. Nolan and D. Pollard, U-processes: rates of convergence, Ann. Statist. 15 (2), 780–799, 1987.
  • [111] M. Omelka, I. Gijbels and N. Veraverbeke, Improved kernel estimation of copulas: weak convergence and goodness-of-fit testing, Ann. Statist. 37 (5B), 3023–3058, 2009.
  • [112] E. Parzen, On estimation of a probability density function and mode, Ann. Math. Statist. 33, 1065–1076, 1962.
  • [113] W. Peng, T. Coleman and L. Mentch, Rates of convergence for random forests via generalized U-statistics, Electron. J. Stat. 16 (1), 232–292, 2022.
  • [114] D. Pollard, Convergence of stochastic processes, Springer Series in Statistics, Springer-Verlag, New York, 1984.
  • [115] B.L.S. Prakasa Rao and A. Sen, Limit distributions of conditional U-statistics, J. Theoret. Probab. 8 (2), 261–301, 1995.
  • [116] M. Rachdi and P. Vieu, Nonparametric regression for functional data: automatic smoothing parameter selection, J. Statist. Plann. Inference 137 (9), 2784–2801, 2007.
  • [117] W. Rejchel, On ranking and generalization bounds, J. Mach. Learn. Res. 13, 1373– 1392, 2012.
  • [118] M. Rosenblatt, Remarks on some nonparametric estimates of a density function, Ann. Math. Statist. 27, 832–837, 1956.
  • [119] A. Schick, Y. Wang and W. Wefelmeyer, Tests for normality based on density estimators of convolutions, Statist. Probab. Lett. 81 (2), 337–343, 2011.
  • [120] D. W. Scott, Multivariate density estimation, Wiley Series in Probability and Statistics. John Wiley & Sons, Inc., Hoboken, NJ, second edition, 2015. Theory, practice, and visualization.
  • [121] J. Segers, Asymptotics of empirical copula processes under non-restrictive smoothness assumptions, Bernoulli 18 (3), 764–782, 2012.
  • [122] A. Sen, Uniform strong consistency rates for conditional U-statistics, Sankhy¯a Ser. A 56 (2), 179–194, 1994.
  • [123] H. L. Shang, Bayesian bandwidth estimation for a functional nonparametric regression model with mixed types of regressors and unknown error density, J. Nonparametr. Stat. 26 (3), 599–615, 2014.
  • [124] A. Shemyakin and A. Kniazev, Introduction to Bayesian estimation and copula models of dependence. John Wiley & Sons, Inc., Hoboken, NJ, 2017.
  • [125] R.P. Sherman, The limiting distribution of the maximum rank correlation estimator, Econometrica 61 (1), 123–137, 1993.
  • [126] R.P. Sherman, Maximal inequalities for degenerate U-processes with applications to optimization estimators, Ann. Statist. 22 (1), 439–459, 1994.
  • [127] B.W. Silverman, Distances on circles, toruses and spheres. J. Appl. Probability 15 (1), 136–143, 1978.
  • [128] B.W. Silverman, Density estimation for statistics and data analysis. Monographs on Statistics and Applied Probability. Chapman & Hall, London, 1986.
  • [129] A. Sklar, Fonctions de répartition à n dimensions et leurs marges, Publ. Inst. Statist. Univ. Paris 8, 229–231, 1959.
  • [130] A. Sklar, Random variables, joint distribution functions, and copulas, Kybernetika (Prague) 9, 449–460, 1973.
  • [131] Y. Song, X. Chen and K. Kato, Approximating high-dimensional infinite-order Ustatistics: statistical and computational guarantees, Electron. J. Stat. 13 (2), 4794–4848, 2019.
  • [132] I. Soukarieh and S. Bouzebda, Exchangeably weighted bootstraps of general markov U-process, Mathematics 10 (20), 1–42, 2022.
  • [133] I. Soukarieh and S. Bouzebda, Renewal type bootstrap for increasing degree U-process of a Markov chain, J. Multivariate Anal. 195, Paper No. 105143, 2023.
  • [134] W. Stute, Conditional empirical processes, Ann. Statist. 14 (2), 638–647, 1986.
  • [135] W. Stute, Conditional U-statistics, Ann. Probab. 19 (2), 812–825, 1991.
  • [136] W. Stute, Almost sure representations of the product-limit estimator for truncated data, Ann. Statist. 21 (1), 146–156, 1993.
  • [137] W. Stute, Lp-convergence of conditional U-statistics, J. Multivariate Anal. 51 (1), 71–82, 1994.
  • [138] W. Stute, Universally consistent conditional U-statistics, Ann. Statist. 22 (1), 460–473, 1994.
  • [139] W. Stute, Symmetrized NN-conditional U-statistics, In Research developments in probability and statistics, pages 231–237. VSP, Utrecht, 1996.
  • [140] A. Tenbusch, Nonparametric curve estimation with Bernstein estimates, Metrika 45 (1), 1–30, 1997.
  • [141] A. van der Vaart, New Donsker classes, Ann. Probab. 24 (4), 2128–2140, 1996.
  • [142] A. van der Vaart and J.A. Wellner, Weak convergence and empirical processes. Springer Series in Statistics. Springer-Verlag, New York, 1996. With applications to statistics.
  • [143] R. von Mises, On the asymptotic distribution of differentiable statistical functions, Ann. Math. Statistics 18, 309–348, 1947.
  • [144] M.P. Wand and M.C. Jones, Kernel smoothing, volume 60 of Monographs on Statistics and Applied Probability, Chapman and Hall, Ltd., London, 1995.
  • [145] G.S. Watson, Smooth regression analysis, Sankhy¯a Ser. A 26, 359–372, 1964.
  • [146] Z. Wei and D. Kim, On multivariate asymmetric dependence using multivariate skew-normal copula-based regression, Internat. J. Approx. Reason. 92, 376–391, 2018.

On the weak convergence and the uniform-in-bandwidth consistency of the general conditional $U$-processes based on the copula representation: multivariate setting

Year 2023, Volume: 52 Issue: 5, 1303 - 1348, 31.10.2023
https://doi.org/10.15672/hujms.1134334

Abstract

$U$-statistics represent a fundamental class of statistics from modeling quantities of interest defined by multi-subject responses. $U$-statistics generalise the empirical mean of a random variable $X$ to sums over every $m$-tuple of distinct observations of $X$. Stute [Conditional U -statistics, Ann. Probab., 1991] introduced a class of estimators called conditional $U$-statistics. In the present work, we provide a new class of estimators of conditional $U$-statistics. More precisely, we investigate the conditional $U$-statistics based on copula representation. We establish the uniform-in-bandwidth consistency for the proposed estimator. In addition, uniform consistency is also established over $\varphi \in \mathscr{F}$ for a suitably restricted class $\mathscr{F}$, in both cases bounded and unbounded, satisfying some moment conditions. Our theorems allow data-driven local bandwidths for these statistics. Moreover, in the same context, we show the uniform bandwidth consistency for the nonparametric Inverse Probability of Censoring Weighted estimators of the regression function under random censorship, which is of its own interest. We also consider the weak convergence of the conditional $U$-statistics processes. We discuss the wild bootstrap of the conditional $U$-statistics processes. These results are proved under some standard structural conditions on the Vapnik-Chervonenkis class of functions and some mild conditions on the model.

References

  • [1] J. Abrevaya and W. Jiang, A nonparametric approach to measuring and testing curvature, J. Bus. Econom. Statist. 23 (1), 1-19, 2005.
  • [2] H. Akaike, An approximation to the density function, Ann. Inst. Statist. Math., Tokyo 6, 127–132, 1954.
  • [3] M.A. Arcones, The law of the iterated logarithm for U-processes, J. Multivariate Anal. 47 (1), 139–151, 1993.
  • [4] M.A. Arcones and E. Giné, Limit theorems for U-processes, Ann. Probab. 21 (3), 1494–1542, 1993.
  • [5] M.A. Arcones and Y. Wang, Some new tests for normality based on U-processes, Statist. Probab. Lett. 76 (1), 69–82, 2006.
  • [6] K. Benhenni, F. Ferraty, M. Rachdi, and P. Vieu. Local smoothing regression with functional data, Comput. Statist. 22 (3), 353–369, 2007.
  • [7] W. Bergsma and A. Dassios, A consistent test of independence based on a sign covariance related to Kendall’s tau, Bernoulli 20 (2), 1006–1028, 2014.
  • [8] J. R. Blum, J. Kiefer, and M. Rosenblatt, Distribution free tests of independence based on the sample distribution function, Ann. Math. Statist. 32, 485–498, 1961.
  • [9] S. Borovkova, R. Burton, and H. Dehling, Consistency of the Takens estimator for the correlation dimension, Ann. Appl. Probab. 9 (2), 376–390, 1999.
  • [10] S. Bouzebda, Some new multivariate tests of independence, Math. Methods Statist. 20 (3), 192–205, 2011.
  • [11] S. Bouzebda, On the strong approximation of bootstrapped empirical copula processes with applications, Math. Methods Statist. 21 (3), 153–188, 2012.
  • [12] S. Bouzebda and T. Zari, Asymptotic behavior of weighted multivariate Cramér-von Mises-type statistics under contiguous alternatives, Math. Methods Statist. 22 (3), 226– 252, 2013.
  • [13] S. Bouzebda, Bootstrap de l’estimateur de Hill: théorèmes limites, Ann. I.S.U.P. 54 (1-2), 61–72, 2010.
  • [14] S. Bouzebda, Strong approximation of the smoothed Q-Q processes, East J. Theor. Stat. 31 (2), 169–191, 2010.
  • [15] S. Bouzebda, General tests of independence based on empirical processes indexed by functions, Stat. Methodol. 21, 59–87, 2014.
  • [16] S. Bouzebda, Kac’s representation for empirical copula process from an asymptotic viewpoint, Statist. Probab. Lett. 123, 107–113, 2017.
  • [17] S. Bouzebda and M. Cherfi, Test of symmetry based on copula function, J. Statist. Plann. Inference 142 (5), 1262–1271, 2012.
  • [18] S. Bouzebda and T. El-hadjali, Uniform convergence rate of the kernel regression estimator adaptive to intrinsic dimension in presence of censored data, J. Nonparametr. Stat. 32 (4), 864–914, 2020.
  • [19] S. Bouzebda and I. Elhattab, A strong consistency of a nonparametric estimate of entropy under random censorship, C. R. Math. Acad. Sci. Paris 347 (13-14), 821–826, 2009.
  • [20] S. Bouzebda and I. Elhattab, Uniform in bandwidth consistency of the kernel-type estimator of the Shannon’s entropy, C. R. Math. Acad. Sci. Paris 348 (5-6), 317–321, 2010.
  • [21] S. Bouzebda and I. Elhattab, Uniform-in-bandwidth consistency for kernel-type estimators of Shannon’s entropy, Electron. J. Stat. 5, 440–459, 2011.
  • [22] S. Bouzebda, I. Elhattab and B. Nemouchi, On the uniform-in-bandwidth consistency of the general conditional U-statistics based on the copula representation, J. Nonparametr. Stat. 33 (2), 321–358, 2021.
  • [23] S. Bouzebda, I. Elhattab and C.T. Seck, Uniform in bandwidth consistency of nonparametric regression based on copula representation, Statist. Probab. Lett. 137, 173–182, 2018.
  • [24] S. Bouzebda and A. Keziou, New estimates and tests of independence in semiparametric copula models, Kybernetika (Prague) 46 (1), 178–201, 2010.
  • [25] S. Bouzebda and A. Keziou, A new test procedure of independence in copula models via χ2-divergence, Comm. Statist. Theory Methods 39 (1-2), 1–20, 2010.
  • [26] S. Bouzebda and N. Limnios, Exchangeably weighted bootstraps of empirical estimators of a semi-Markov kernel, C. R. Math. Acad. Sci. Paris 351 (13-14), 569–573, 2013.
  • [27] S. Bouzebda and N. Limnios, Exchangeably weighted bootstraps of martingale difference arrays under the uniformly integrable entropy, J. Stoch. Anal. 1 (3), Art. 6, 13, 2020.
  • [28] S. Bouzebda and B. Nemouchi, Uniform consistency and uniform in bandwidth consistency for nonparametric regression estimates and conditional U-statistics involving functional data, J. Nonparametr. Stat. 32 (2), 452–509, 2020.
  • [29] S. Bouzebda and B. Nemouchi, Weak-convergence of empirical conditional processes and conditional U-processes involving functional mixing data, Stat. Inference Stoch. Process. 26 (1), 33–88, 2023.
  • [30] S. Bouzebda and A. Nezzal, Uniform consistency and uniform in number of neighbors consistency for nonparametric regression estimates and conditional U-statistics involving functional data, Jpn. J. Stat. Data Sci. 5 (2), 431–533, 2022.
  • [31] S. Bouzebda and A. Nezzal, Asymptotic properties of conditional U-statistics using delta sequences. Comm. Statist. Theory Methods, pages 1–56, 2023.
  • [32] S. Bouzebda, A. Nezzal and T. Zari, Uniform consistency for functional conditional u-statistics using delta-sequences, Mathematics 11 (1), 1–39, 2023.
  • [33] S. Bouzebda, C. Papamichail and N. Limnios, On a multidimensional general bootstrap for empirical estimator of continuous-time semi-Markov kernels with applications, J. Nonparametr. Stat. 30 (1), 49–86, 2018.
  • [34] S. Bouzebda and I. Soukarieh, Non-parametric conditional U-processes for locally stationary functional random fields under stochastic sampling design, Mathematics 11(1), 1–70, 2023.
  • [35] S. Bouzebda and I. Soukarieh, Renewal type bootstrap for U-process Markov chains, Markov Process. Related Fields, 1–52, 2023.
  • [36] S. Bouzebda and N. Taachouche, On the variable bandwidth kernel estimation of conditional U-statistics at optimal rates in sup-norm, Phys. A 625, Paper No. 129000, 2023.
  • [37] S. Bouzebda and N. Taachouche, Rates of the strong uniform consistency for the kernel-type regression function estimators with general kernels on manifolds, Math. Methods Statist. 32 (1), 27–80, 2023.
  • [38] T. T. Cai and L. Zhang, High-dimensional Gaussian copula regression: adaptive estimation and statistical inference, Statist. Sinica 28 (2), 963–993, 2018.
  • [39] A. Carbonez, L. Györfi and E.C. van der Meulen, Partitioning-estimates of a regression function under random censoring, Statist. Decisions 13 (1), 21–37, 1995.
  • [40] J. E. Chacón, J. Montanero and A.G. Nogales, A note on kernel density estimation at a parametric rate, J. Nonparametr. Stat. 19 (1), 13–21, 2007.
  • [41] J.E. Chacón and T. Duong, Multivariate kernel smoothing and its applications, volume 160 of Monographs on Statistics and Applied Probability, CRC Press, Boca Raton, FL, 2018.
  • [42] S.X. Chen and T-M. Huang, Nonparametric estimation of copula functions for dependence modelling, Canad. J. Statist. 35 (2), 265–282, 2007.
  • [43] U. Cherubini, F. Gobbi and S. Mulinacci, Convolution Copula Econometrics, SpringerBriefs in Statistics. Springer, Cham, 2016.
  • [44] U. Cherubini, E. Luciano and W. Vecchiato, Copula Methods in Finance, Wiley Finance Series. John Wiley & Sons, Ltd., Chichester, 2004.
  • [45] K. Chokri and S. Bouzebda, Uniform-in-bandwidth consistency results in the partially linear additive model components estimation, Comm. Statist. Theory Methods, 1–42, 2023.
  • [46] K,-L. Chung, An estimate concerning the Kolmogoroff limit distribution, Trans. Amer. Math. Soc. 67, 36–50, 1949.
  • [47] S. Clémençon, G. Lugosi and N. Vayatis, Ranking and empirical minimization of U-statistics, Ann. Statist. 36 (2), 844–874, 2008.
  • [48] M. Csörgő and P.Révész, Strong Approximations in Probability and Statistics, Probability and Mathematical Statistics. Academic Press, Inc, [Harcourt Brace Jovanovich, Publishers], New York-London, 1981.
  • [49] G. Dall’Aglio, S. Kotz and G. Salinetti, editors, Advances in probability distributions with given marginals, volume 67 of Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1991. Beyond the copulas, Papers from the Symposium on Distributions with Given Marginals held in Rome, April 1990.
  • [50] V.H. de la Peña and E. Giné, Decoupling, From dependence to independence, Randomly stopped processes. U-statistics and processes. Martingales and beyond, Probability and its Applications (New York). Springer-Verlag, New York, 1999.
  • [51] P. Deheuvels, One bootstrap suffices to generate sharp uniform bounds in functional estimation, Kybernetika (Prague) 47 (6), 855–865, 2011.
  • [52] P. Deheuvels and J. H.J. Einmahl, Functional limit laws for the increments of Kaplan- Meier product-limit processes and applications, Ann. Probab. 28 (3), 1301–1335, 2000.
  • [53] P. Deheuvels and D.M. Mason, General asymptotic confidence bands based on kerneltype function estimators, Stat. Inference Stoch. Process. 7 (3), 225–277, 2004.
  • [54] H. Dette, R. Van Hecke and S. Volgushev, Some comments on copula-based regression, J. Amer. Statist. Assoc. 109 (507), 1319–1324, 2014.
  • [55] L. Devroye and G. Lugosi, Combinatorial Methods in Density Estimation, Springer Series in Statistics. Springer-Verlag, New York, 2001.
  • [56] J. Dony and D.M. Mason, Uniform in bandwidth consistency of conditional Ustatistics, Bernoulli 14 (4), 1108–1133, 2008.
  • [57] R.M. Dudley, A course on empirical processes. In École d’été de probabilités de Saint- Flour, XII—1982, volume 1097 of Lecture Notes in Math., pages 1–142. Springer, Berlin, 1984.
  • [58] R. M. Dudley, Uniform Central Limit Theorems, volume 142 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, New York, second edition, 2014.
  • [59] F. Durante and C. Sempi, Principles of copula theory. CRC Press, Boca Raton, FL, 2016.
  • [60] P.P.B. Eggermont and V.N. LaRiccia, Maximum penalized likelihood estimation., Vol. I. Springer Series in Statistics. Springer-Verlag, New York, 2001. Density estimation.
  • [61] U. Einmahl and D.M. Mason, An empirical process approach to the uniform consistency of kernel-type function estimators, J. Theoret. Probab. 13 (1), 1–37, 2000.
  • [62] U. Einmahl and D.M. Mason, Uniform in bandwidth consistency of kernel-type function estimators, Ann. Statist. 33 (3), 1380–1403, 2005.
  • [63] L. Faivishevsky and J. Goldberger, Ica based on a smooth estimation of the differential entropy. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Information Processing Systems 21., Curran Associates, Inc., 2008.
  • [64] J. Fan and I. Gijbels, Local polynomial modelling and its applications, volume 66 of Monographs on Statistics and Applied Probability, Chapman & Hall, London, 1996.
  • [65] J.D. Fermanian, D. Radulović and M. Wegkamp, Asymptotic total variation tests for copulas, Bernoulli 21 (3), 1911–1945, 2015.
  • [66] A. Földes and L. Rejtő, A LIL type result for the product limit estimator, Z. Wahrsch. Verw. Gebiete 56 (1), 75–86, 1981.
  • [67] E.W. Frees, Infinite order U-statistics, Scand. J. Statist. 16 (1), 29–45, 1989.
  • [68] E.W. Frees and E.A. Valdez, Understanding relationships using copulas, N. Am. Actuar. J. 2 (1), 1–25, 1998.
  • [69] J. Galambos, Order statistics of samples from multivariate distributions, J. Amer. Statist. Assoc. 70 (351, part 1), 674–680, 1975.
  • [70] J. Gao and I. Gijbels, Bandwidth selection in nonparametric kernel testing, J. Amer. Statist. Assoc. 103 (484), 1584–1594, 2008.
  • [71] C. Genest, A.K. Nikoloulopoulos, L.-P. Rivest and M. Fortin, Predicting dependent binary outcomes through logistic regressions and meta-elliptical copulas, Braz. J. Probab. Stat. 27 (3), 265–284, 2013.
  • [72] S. Ghosal, A. Sen and A.W. van der Vaart, Testing monotonicity of regression, Ann. Statist. 28 (4), 1054–1082, 2000.
  • [73] R.D. Gill and S. Johansen, A survey of product-integration with a view toward application in survival analysis, Ann. Statist. 18 (4), 1501–1555, 1990.
  • [74] E. Giné, V. Koltchinskii and J. Zinn, Weighted uniform consistency of kernel density estimators, Ann. Probab. 32 (3B):2570–2605, 2004.
  • [75] E. Giné and D. M. Mason, Laws of the iterated logarithm for the local U-statistic process, J. Theoret. Probab. 20 (3), 457–485, 2007.
  • [76] E. Giné and D.M. Mason, On local U-statistic processes and the estimation of densities of functions of several sample variables, Ann. Statist. 35 (3), 1105–1145, 2007.
  • [77] E.J. Gumbel, Bivariate exponential distributions, Journal of the American Statistical Association 55 (292), 698–707, 1960.
  • [78] L. Györfi, M. Kohler, A. Krzyżak and H. Walk, A distribution-free theory of nonparametric regression, Springer Series in Statistics, Springer-Verlag, New York, 2002.
  • [79] P. Hall, Asymptotic properties of integrated square error and cross-validation for kernel estimation of a regression function, Z. Wahrsch. Verw. Gebiete 67 (2), 175–196, 1984.
  • [80] P. Hall and J.S. Marron, Estimation of integrated squared density derivatives, Statist. Probab. Lett. 6 (2), 109–115, 1987.
  • [81] P.R. Halmos. The theory of unbiased estimation, Ann. Math. Statistics 17, 34–43, 1946.
  • [82] M. Harel and M.L. Puri, Conditional U-statistics for dependent random variables, J. Multivariate Anal. 57 (1), 84–100, 1996.
  • [83] C. Heilig and D. Nolan, Limit theorems for the infinite-degree U-process, Statist. Sinica 11 (1), 289–302, 2001.
  • [84] W. Hoeffding, A class of statistics with asymptotically normal distribution, Ann. Math. Statistics 19, 293–325, 1948.
  • [85] M. Hollander, D. Park and F. Proschan, Testing whether new is better than used of a specified age, with randomly censored data, Canad. J. Statist. 13 (1), 45–52, 1985.
  • [86] J.L. Horowitz and V.G. Spokoiny, An adaptive, rate-optimal test of a parametric mean-regression model against a nonparametric alternative, Econometrica 69 (3), 599– 631, 2001.
  • [87] J.Hüsler and R.D. Reiss, Maxima of normal random vectors: between independence and complete dependence, Statist. Probab. Lett. 7 (4), 283–286, 1989.
  • [88] P. Janssen, J. Swanepoel and N. Veraverbeke, Bernstein estimation for a copula derivative with application to conditional distribution and regression functionals, TEST 25 (2), 351–374, 2016.
  • [89] H. Joe, Multivariate models and dependence concepts, volume 73 of Monographs on Statistics and Applied Probability, Chapman & Hall, London, 1997.
  • [90] H. Joe, Dependence modeling with copulas, volume 134 of Monographs on Statistics and Applied Probability, CRC Press, Boca Raton, FL, 2015.
  • [91] E. Joly and G. Lugosi, Robust estimation of U-statistics, Stochastic Process. Appl. 126 (12), 3760–3773, 2016.
  • [92] M.C. Jones and D.F. Signorini, A comparison of higher-order bias kernel density estimators. J. Amer. Statist. Assoc. 92 (439), 1063–1073, 1997.
  • [93] E.L. Kaplan and P. Meier, Nonparametric estimation from incomplete observations, J. Amer. Statist. Assoc. 53, 457–481, 1958.
  • [94] M. Kohler, K. Máthé and M. Pintér, Prediction from randomly right censored data, J. Multivariate Anal. 80 (1), 73–100, 2002.
  • [95] N. Kolev and D. Paiva, Copula-based regression models: a survey, J. Statist. Plann. Inference 139 (11), 3847–3856, 2009.
  • [96] A.N. Kolmogorov and V.M. Tihomirov, ε-entropy and ε-capacity of sets in functional space, Amer. Math. Soc. Transl. (2) 17, 277–364, 1961.
  • [97] M.R. Kosorok, Introduction to empirical processes and semiparametric inference, Springer Series in Statistics, Springer, New York, 2008.
  • [98] F. Lad, G. Sanfilippo and G. Agrò, Extropy: complementary dual of entropy, Statist. Sci. 30 (1), 40–58, 2015.
  • [99] A.J. Lee, U-statistics, volume 110 of Statistics: Textbooks and Monographs, Marcel Dekker, Inc., New York, 1990, Theory and practice.
  • [100] S. Lee, O. Linton and Y.J. Whang, Testing for stochastic monotonicity, Econometrica 77 (2), 585–602, 2009.
  • [101] Y.K. Leong and E.A. Valdez, Claims prediction with dependence using copula models, North American Actuarial Journal, 2005.
  • [102] Q. Liu, J. Lee and M. Jordan, A kernelized stein discrepancy for goodness-of-fit tests, In Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of The 33rd International Conference on Machine Learning, volume 48 of Proceedings of Machine Learning Research, pages 276–284, New York, New York, USA, 20–22 Jun 2016. PMLR.
  • [103] B. Maillot and V. Viallon, Uniform limit laws of the logarithm for nonparametric estimators of the regression function in presence of censored data, Math. Methods Statist.
  • [104] D.M. Mason, Proving consistency of non-standard kernel estimators, Stat. Inference Stoch. Process. 15 (2), 151–176, 2012.
  • [105] D.M. Mason and J.W.H. Swanepoel, A general result on the uniform in bandwidth consistency of kernel-type function estimators, TEST 20 (1), 72–94, 2011.
  • [106] A.J. McNeil, R. Frey and P. Embrechts, Quantitative risk management, Princeton Series in Finance. Princeton University Press, Princeton, NJ, revised edition, 2015. Concepts, techniques and tools.
  • [107] È.A. Nadaraja, On a regression estimate, Teor. Verojatnost. i Primenen. 9 157–159, 1964.
  • [108] R.B. Nelsen, An introduction to copulas, Springer Series in Statistics, Springer, New York, second edition, 2006.
  • [109] H. Noh, A. El Ghouch and T. Bouezmarni, Copula-based regression estimation and inference, J. Amer. Statist. Assoc. 108 (502), 676–688, 2013.
  • [110] D. Nolan and D. Pollard, U-processes: rates of convergence, Ann. Statist. 15 (2), 780–799, 1987.
  • [111] M. Omelka, I. Gijbels and N. Veraverbeke, Improved kernel estimation of copulas: weak convergence and goodness-of-fit testing, Ann. Statist. 37 (5B), 3023–3058, 2009.
  • [112] E. Parzen, On estimation of a probability density function and mode, Ann. Math. Statist. 33, 1065–1076, 1962.
  • [113] W. Peng, T. Coleman and L. Mentch, Rates of convergence for random forests via generalized U-statistics, Electron. J. Stat. 16 (1), 232–292, 2022.
  • [114] D. Pollard, Convergence of stochastic processes, Springer Series in Statistics, Springer-Verlag, New York, 1984.
  • [115] B.L.S. Prakasa Rao and A. Sen, Limit distributions of conditional U-statistics, J. Theoret. Probab. 8 (2), 261–301, 1995.
  • [116] M. Rachdi and P. Vieu, Nonparametric regression for functional data: automatic smoothing parameter selection, J. Statist. Plann. Inference 137 (9), 2784–2801, 2007.
  • [117] W. Rejchel, On ranking and generalization bounds, J. Mach. Learn. Res. 13, 1373– 1392, 2012.
  • [118] M. Rosenblatt, Remarks on some nonparametric estimates of a density function, Ann. Math. Statist. 27, 832–837, 1956.
  • [119] A. Schick, Y. Wang and W. Wefelmeyer, Tests for normality based on density estimators of convolutions, Statist. Probab. Lett. 81 (2), 337–343, 2011.
  • [120] D. W. Scott, Multivariate density estimation, Wiley Series in Probability and Statistics. John Wiley & Sons, Inc., Hoboken, NJ, second edition, 2015. Theory, practice, and visualization.
  • [121] J. Segers, Asymptotics of empirical copula processes under non-restrictive smoothness assumptions, Bernoulli 18 (3), 764–782, 2012.
  • [122] A. Sen, Uniform strong consistency rates for conditional U-statistics, Sankhy¯a Ser. A 56 (2), 179–194, 1994.
  • [123] H. L. Shang, Bayesian bandwidth estimation for a functional nonparametric regression model with mixed types of regressors and unknown error density, J. Nonparametr. Stat. 26 (3), 599–615, 2014.
  • [124] A. Shemyakin and A. Kniazev, Introduction to Bayesian estimation and copula models of dependence. John Wiley & Sons, Inc., Hoboken, NJ, 2017.
  • [125] R.P. Sherman, The limiting distribution of the maximum rank correlation estimator, Econometrica 61 (1), 123–137, 1993.
  • [126] R.P. Sherman, Maximal inequalities for degenerate U-processes with applications to optimization estimators, Ann. Statist. 22 (1), 439–459, 1994.
  • [127] B.W. Silverman, Distances on circles, toruses and spheres. J. Appl. Probability 15 (1), 136–143, 1978.
  • [128] B.W. Silverman, Density estimation for statistics and data analysis. Monographs on Statistics and Applied Probability. Chapman & Hall, London, 1986.
  • [129] A. Sklar, Fonctions de répartition à n dimensions et leurs marges, Publ. Inst. Statist. Univ. Paris 8, 229–231, 1959.
  • [130] A. Sklar, Random variables, joint distribution functions, and copulas, Kybernetika (Prague) 9, 449–460, 1973.
  • [131] Y. Song, X. Chen and K. Kato, Approximating high-dimensional infinite-order Ustatistics: statistical and computational guarantees, Electron. J. Stat. 13 (2), 4794–4848, 2019.
  • [132] I. Soukarieh and S. Bouzebda, Exchangeably weighted bootstraps of general markov U-process, Mathematics 10 (20), 1–42, 2022.
  • [133] I. Soukarieh and S. Bouzebda, Renewal type bootstrap for increasing degree U-process of a Markov chain, J. Multivariate Anal. 195, Paper No. 105143, 2023.
  • [134] W. Stute, Conditional empirical processes, Ann. Statist. 14 (2), 638–647, 1986.
  • [135] W. Stute, Conditional U-statistics, Ann. Probab. 19 (2), 812–825, 1991.
  • [136] W. Stute, Almost sure representations of the product-limit estimator for truncated data, Ann. Statist. 21 (1), 146–156, 1993.
  • [137] W. Stute, Lp-convergence of conditional U-statistics, J. Multivariate Anal. 51 (1), 71–82, 1994.
  • [138] W. Stute, Universally consistent conditional U-statistics, Ann. Statist. 22 (1), 460–473, 1994.
  • [139] W. Stute, Symmetrized NN-conditional U-statistics, In Research developments in probability and statistics, pages 231–237. VSP, Utrecht, 1996.
  • [140] A. Tenbusch, Nonparametric curve estimation with Bernstein estimates, Metrika 45 (1), 1–30, 1997.
  • [141] A. van der Vaart, New Donsker classes, Ann. Probab. 24 (4), 2128–2140, 1996.
  • [142] A. van der Vaart and J.A. Wellner, Weak convergence and empirical processes. Springer Series in Statistics. Springer-Verlag, New York, 1996. With applications to statistics.
  • [143] R. von Mises, On the asymptotic distribution of differentiable statistical functions, Ann. Math. Statistics 18, 309–348, 1947.
  • [144] M.P. Wand and M.C. Jones, Kernel smoothing, volume 60 of Monographs on Statistics and Applied Probability, Chapman and Hall, Ltd., London, 1995.
  • [145] G.S. Watson, Smooth regression analysis, Sankhy¯a Ser. A 26, 359–372, 1964.
  • [146] Z. Wei and D. Kim, On multivariate asymmetric dependence using multivariate skew-normal copula-based regression, Internat. J. Approx. Reason. 92, 376–391, 2018.
There are 146 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Statistics
Authors

Salim Bouzebda 0000-0001-7801-4945

Early Pub Date August 8, 2023
Publication Date October 31, 2023
Published in Issue Year 2023 Volume: 52 Issue: 5

Cite

APA Bouzebda, S. (2023). On the weak convergence and the uniform-in-bandwidth consistency of the general conditional $U$-processes based on the copula representation: multivariate setting. Hacettepe Journal of Mathematics and Statistics, 52(5), 1303-1348. https://doi.org/10.15672/hujms.1134334
AMA Bouzebda S. On the weak convergence and the uniform-in-bandwidth consistency of the general conditional $U$-processes based on the copula representation: multivariate setting. Hacettepe Journal of Mathematics and Statistics. October 2023;52(5):1303-1348. doi:10.15672/hujms.1134334
Chicago Bouzebda, Salim. “On the Weak Convergence and the Uniform-in-Bandwidth Consistency of the General Conditional $U$-Processes Based on the Copula Representation: Multivariate Setting”. Hacettepe Journal of Mathematics and Statistics 52, no. 5 (October 2023): 1303-48. https://doi.org/10.15672/hujms.1134334.
EndNote Bouzebda S (October 1, 2023) On the weak convergence and the uniform-in-bandwidth consistency of the general conditional $U$-processes based on the copula representation: multivariate setting. Hacettepe Journal of Mathematics and Statistics 52 5 1303–1348.
IEEE S. Bouzebda, “On the weak convergence and the uniform-in-bandwidth consistency of the general conditional $U$-processes based on the copula representation: multivariate setting”, Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 5, pp. 1303–1348, 2023, doi: 10.15672/hujms.1134334.
ISNAD Bouzebda, Salim. “On the Weak Convergence and the Uniform-in-Bandwidth Consistency of the General Conditional $U$-Processes Based on the Copula Representation: Multivariate Setting”. Hacettepe Journal of Mathematics and Statistics 52/5 (October 2023), 1303-1348. https://doi.org/10.15672/hujms.1134334.
JAMA Bouzebda S. On the weak convergence and the uniform-in-bandwidth consistency of the general conditional $U$-processes based on the copula representation: multivariate setting. Hacettepe Journal of Mathematics and Statistics. 2023;52:1303–1348.
MLA Bouzebda, Salim. “On the Weak Convergence and the Uniform-in-Bandwidth Consistency of the General Conditional $U$-Processes Based on the Copula Representation: Multivariate Setting”. Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 5, 2023, pp. 1303-48, doi:10.15672/hujms.1134334.
Vancouver Bouzebda S. On the weak convergence and the uniform-in-bandwidth consistency of the general conditional $U$-processes based on the copula representation: multivariate setting. Hacettepe Journal of Mathematics and Statistics. 2023;52(5):1303-48.

Cited By