Research Article
BibTex RIS Cite

Regarding equitable colorability defect of hypergraphs

Year 2024, Volume: 53 Issue: 1, 184 - 190, 29.02.2024
https://doi.org/10.15672/hujms.1254664

Abstract

After Lovász’s break-through in determining the chromatic number of Kneser graphs (1978), and after extending this result to the chromatic number of $r$-uniform Kneser hypergraphs by Alon, Frankl, and Lovász’s (1986), some important parameters such as colorability defect and equitable colorability defect were introduced in order to provide sharp lower bounds for the chromatic number of general $r$-uniform Kneser hypergraphs. As a generalization of many earlier results in this area, Azarpendar and Jafari (2023) introduced the $s$-th equitable $r$-colorability defect ${\rm ecd}^r (\mathcal{F} , s)$; a parameter which provides a lower bound for the chromatic number of generalized Kneser hypergraphs ${\rm KG} ^r (\mathcal{F} , s)$. They proved the following nice inequality
$$\chi \left( {\rm KG} ^r (\mathcal{F} , s) \right) \geq \left\lceil \frac{ {\rm ecd}^r \left( \mathcal{F} , \left\lfloor \frac{s}{2} \right\rfloor \right) }{r-1} \right\rceil ,$$
and noted that it is plausible that the above inequality remains true if one replaces $\left\lfloor \frac{s}{2} \right\rfloor$ with $s$.

In this paper, considering the relation
${\rm ecd}^r \left( \mathcal{F} , x \right) \geq {\rm cd}^r \left( \mathcal{F} , x \right)$ which always holds, we show that even in the weaker inequality
$$\chi \left( {\rm KG} ^r (\mathcal{F} , s) \right) \geq \left\lceil \frac{ {\rm cd}^r \left( \mathcal{F} , \left\lfloor \frac{s}{2} \right\rfloor \right) }{r-1} \right\rceil ,$$
no number $x$ greater than $\left\lfloor \frac{s}{2} \right\rfloor$ could be replaced by $\left\lfloor \frac{s}{2} \right\rfloor$.

References

  • [1] R. A. Sani and M. Alishahi, A new lower bound for the chromatic number of general Kneser hypergraphs, Eur. J. Comb. 71, 229–245, 2018.
  • [2] N. Alon, P. Frankl, and L. Lovász. The chromatic number of Kneser hypergraphs, Trans. Amer. Math. Soc. 298 (1), 359–370, 1986.
  • [3] S. Azarpendar and A. Jafari, On some topological and combinatorial lower bounds on the chromatic number of Kneser type hypergraphs, J. Comb. Theory Ser. B, 146, 372–381, 2021.
  • [4] S. Azarpendar and A. Jafari, Lower bounds for the chromatic number of certain Kneser-type hypergraphs, Eur. J. Comb. 110, 103664, 2023.
  • [5] V. L. Dol'nikov, A combinatorial inequality, Sibirsk. Mat. Zh. 29 (3), 53–58, 219, 1988.
  • [6] P. Erdos, Problems and results in combinatorial analysis, In Colloquio Internazionale sulle Teorie Combinatorie (Rome, 1973), Tomo II, Atti dei Convegni Lincei, 17, Accad. Naz. Lincei, Rome, 1976.
  • [7] M. Kneser, Ein Satz über abelsche Gruppen mit Anwendungen auf die Geometrie der Zahlen, Math. Z. 61, 429–434, 1955.
  • [8] I. Kríž, Equivariant cohomology and lower bounds for chromatic numbers, Trans. Amer. Math. Soc. 333 (2), 567–577, 1992.
  • [9] I. Kríž, A correction to equivariant cohomology and lower bounds for chromatic numbers, Trans. Amer. Math. Soc. 352 (4), 1951–1952, 2000.
  • [10] L. Lovász, Kneser’s conjecture, chromatic number, and homotopy, J. Combin. Theory Ser. A, 25 (3), 319–324, 1978.
Year 2024, Volume: 53 Issue: 1, 184 - 190, 29.02.2024
https://doi.org/10.15672/hujms.1254664

Abstract

References

  • [1] R. A. Sani and M. Alishahi, A new lower bound for the chromatic number of general Kneser hypergraphs, Eur. J. Comb. 71, 229–245, 2018.
  • [2] N. Alon, P. Frankl, and L. Lovász. The chromatic number of Kneser hypergraphs, Trans. Amer. Math. Soc. 298 (1), 359–370, 1986.
  • [3] S. Azarpendar and A. Jafari, On some topological and combinatorial lower bounds on the chromatic number of Kneser type hypergraphs, J. Comb. Theory Ser. B, 146, 372–381, 2021.
  • [4] S. Azarpendar and A. Jafari, Lower bounds for the chromatic number of certain Kneser-type hypergraphs, Eur. J. Comb. 110, 103664, 2023.
  • [5] V. L. Dol'nikov, A combinatorial inequality, Sibirsk. Mat. Zh. 29 (3), 53–58, 219, 1988.
  • [6] P. Erdos, Problems and results in combinatorial analysis, In Colloquio Internazionale sulle Teorie Combinatorie (Rome, 1973), Tomo II, Atti dei Convegni Lincei, 17, Accad. Naz. Lincei, Rome, 1976.
  • [7] M. Kneser, Ein Satz über abelsche Gruppen mit Anwendungen auf die Geometrie der Zahlen, Math. Z. 61, 429–434, 1955.
  • [8] I. Kríž, Equivariant cohomology and lower bounds for chromatic numbers, Trans. Amer. Math. Soc. 333 (2), 567–577, 1992.
  • [9] I. Kríž, A correction to equivariant cohomology and lower bounds for chromatic numbers, Trans. Amer. Math. Soc. 352 (4), 1951–1952, 2000.
  • [10] L. Lovász, Kneser’s conjecture, chromatic number, and homotopy, J. Combin. Theory Ser. A, 25 (3), 319–324, 1978.
There are 10 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Saeed Shaebani 0000-0003-4615-2627

Early Pub Date August 15, 2023
Publication Date February 29, 2024
Published in Issue Year 2024 Volume: 53 Issue: 1

Cite

APA Shaebani, S. (2024). Regarding equitable colorability defect of hypergraphs. Hacettepe Journal of Mathematics and Statistics, 53(1), 184-190. https://doi.org/10.15672/hujms.1254664
AMA Shaebani S. Regarding equitable colorability defect of hypergraphs. Hacettepe Journal of Mathematics and Statistics. February 2024;53(1):184-190. doi:10.15672/hujms.1254664
Chicago Shaebani, Saeed. “Regarding Equitable Colorability Defect of Hypergraphs”. Hacettepe Journal of Mathematics and Statistics 53, no. 1 (February 2024): 184-90. https://doi.org/10.15672/hujms.1254664.
EndNote Shaebani S (February 1, 2024) Regarding equitable colorability defect of hypergraphs. Hacettepe Journal of Mathematics and Statistics 53 1 184–190.
IEEE S. Shaebani, “Regarding equitable colorability defect of hypergraphs”, Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 1, pp. 184–190, 2024, doi: 10.15672/hujms.1254664.
ISNAD Shaebani, Saeed. “Regarding Equitable Colorability Defect of Hypergraphs”. Hacettepe Journal of Mathematics and Statistics 53/1 (February 2024), 184-190. https://doi.org/10.15672/hujms.1254664.
JAMA Shaebani S. Regarding equitable colorability defect of hypergraphs. Hacettepe Journal of Mathematics and Statistics. 2024;53:184–190.
MLA Shaebani, Saeed. “Regarding Equitable Colorability Defect of Hypergraphs”. Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 1, 2024, pp. 184-90, doi:10.15672/hujms.1254664.
Vancouver Shaebani S. Regarding equitable colorability defect of hypergraphs. Hacettepe Journal of Mathematics and Statistics. 2024;53(1):184-90.