Research Article
BibTex RIS Cite

Local distance antimagic cromatic number of join product of graphs with cycles or paths

Year 2024, Volume: 53 Issue: 3, 788 - 802, 27.06.2024
https://doi.org/10.15672/hujms.1266085

Abstract

Let $G$ be a graph of order $p$ without isolated vertices. A bijection $f: V \to \{1,2,3,\dots,p\}$ is called a local distance antimagic labeling, if $w_f(u)\ne w_f(v)$ for every edge $uv$ of $G$, where $w_f(u)=\sum_{x\epsilon N(u)} {f(x)}$. The local distance antimagic chromatic number $\chi_{lda}(G)$ is defined to be the minimum number of colors taken over all colorings of $G$ induced by local distance antimagic labelings of $G$. In this paper, we determined the local distance antimagic chromatic number of some cycles, paths, disjoint union of 3-paths. We also determined the local distance antimagic chromatic number of join products of some graphs with cycles or paths.

References

  • [1] S. Arumugam, D. Froncek, and N. Kamatchi, Distance magic graphs–A survey, J. Indones. Math. Soc. Special Edition, 1126, 2011.
  • [2] S. Arumugam and N. Kamatchi, On $(a, d)$-distance antimagic graphs, Australas. J. Combin. 54, 279–287, 2012.
  • [3] S. Arumugam, K. Premalatha, M. Bača and A. Semaničová-Fecňovčíková, Local antimagic vertex coloring of a graph, Graphs Combin. 33, 275–285, 2017.
  • [4] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, New York, MacMillan, 1976.
  • [5] J. Bensmail, M. Senhaji and K.S. Lyngsie, On a combination of the 1-2-3 conjecture and the antimagic labelling conjecture, Discrete Math. Theor. Comput. Sci. 19 (1), 2017.
  • [6] T. Divya and S. Devi Yamini, Local distance antimagic vertex coloring of graphs, https://arxiv.org/abs/2106.01833v1, 2021.
  • [7] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin.1 (Dynamic Surveys),DS6, 2021.
  • [8] N. Hartsfield and G. Ringel, Pearls in Graph Theory, Academic Press, INC., Boston, 1994.
  • [9] J. Haslegrave, Proof of a local antimagic conjecture, Discrete Math. Theor. Comput. Sci. 20 (1), 2018.
  • [10] N. Kamatchi and S. Arumugam, Distance antimagic graphs, J. Combin. Math. Combin. Comput. 84, 6167, 2013.
  • [11] G.C. Lau, H.K. Ng and W.C. Shiu, Affirmative solutions on local antimagic chromatic number, Graphs Combin. 36, 1337–1354, 2020.
  • [12] G.C. Lau, W.C. Shiu and H.K. Ng, On local antimagic chromatic number of cyclerelated join graphs, Discuss. Math. Graph Theory, 4 (1), 133–152, 2021.
  • [13] M. Nalliah, Antimagic labeling of Graphs and digraphs, Ph.D Thesis, Kalasalingam University, Tamil Nadu, India, 2013.
  • [14] S. Shaebani, On local antimagic chromatic number of graphs, J. Algebr. Syst. 7 (2), 245–256, 2020.
  • [15] R. Shankar and M. Nalliah, Local vertex antimagic chromatic number of some wheel related graphs, Proyecciones J. Math. 41 (1), 319–334, 2022.
  • [16] V. Priyadharshini and M. Nalliah, Local distance antimagic chromatic number for the union of complete bipartite graphs, Tamkang J. Math. online, https://journals.math.tku.edu.tw/index.php/TKJM/article/view/4804, 2023.
Year 2024, Volume: 53 Issue: 3, 788 - 802, 27.06.2024
https://doi.org/10.15672/hujms.1266085

Abstract

References

  • [1] S. Arumugam, D. Froncek, and N. Kamatchi, Distance magic graphs–A survey, J. Indones. Math. Soc. Special Edition, 1126, 2011.
  • [2] S. Arumugam and N. Kamatchi, On $(a, d)$-distance antimagic graphs, Australas. J. Combin. 54, 279–287, 2012.
  • [3] S. Arumugam, K. Premalatha, M. Bača and A. Semaničová-Fecňovčíková, Local antimagic vertex coloring of a graph, Graphs Combin. 33, 275–285, 2017.
  • [4] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, New York, MacMillan, 1976.
  • [5] J. Bensmail, M. Senhaji and K.S. Lyngsie, On a combination of the 1-2-3 conjecture and the antimagic labelling conjecture, Discrete Math. Theor. Comput. Sci. 19 (1), 2017.
  • [6] T. Divya and S. Devi Yamini, Local distance antimagic vertex coloring of graphs, https://arxiv.org/abs/2106.01833v1, 2021.
  • [7] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin.1 (Dynamic Surveys),DS6, 2021.
  • [8] N. Hartsfield and G. Ringel, Pearls in Graph Theory, Academic Press, INC., Boston, 1994.
  • [9] J. Haslegrave, Proof of a local antimagic conjecture, Discrete Math. Theor. Comput. Sci. 20 (1), 2018.
  • [10] N. Kamatchi and S. Arumugam, Distance antimagic graphs, J. Combin. Math. Combin. Comput. 84, 6167, 2013.
  • [11] G.C. Lau, H.K. Ng and W.C. Shiu, Affirmative solutions on local antimagic chromatic number, Graphs Combin. 36, 1337–1354, 2020.
  • [12] G.C. Lau, W.C. Shiu and H.K. Ng, On local antimagic chromatic number of cyclerelated join graphs, Discuss. Math. Graph Theory, 4 (1), 133–152, 2021.
  • [13] M. Nalliah, Antimagic labeling of Graphs and digraphs, Ph.D Thesis, Kalasalingam University, Tamil Nadu, India, 2013.
  • [14] S. Shaebani, On local antimagic chromatic number of graphs, J. Algebr. Syst. 7 (2), 245–256, 2020.
  • [15] R. Shankar and M. Nalliah, Local vertex antimagic chromatic number of some wheel related graphs, Proyecciones J. Math. 41 (1), 319–334, 2022.
  • [16] V. Priyadharshini and M. Nalliah, Local distance antimagic chromatic number for the union of complete bipartite graphs, Tamkang J. Math. online, https://journals.math.tku.edu.tw/index.php/TKJM/article/view/4804, 2023.
There are 16 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Wai-chee Shiu 0000-0002-2819-8480

Gee-choon Lau 0000-0002-9777-6571

Nalliah M 0000-0002-3927-2607

Early Pub Date April 14, 2024
Publication Date June 27, 2024
Published in Issue Year 2024 Volume: 53 Issue: 3

Cite

APA Shiu, W.-c., Lau, G.-c., & M, N. (2024). Local distance antimagic cromatic number of join product of graphs with cycles or paths. Hacettepe Journal of Mathematics and Statistics, 53(3), 788-802. https://doi.org/10.15672/hujms.1266085
AMA Shiu Wc, Lau Gc, M N. Local distance antimagic cromatic number of join product of graphs with cycles or paths. Hacettepe Journal of Mathematics and Statistics. June 2024;53(3):788-802. doi:10.15672/hujms.1266085
Chicago Shiu, Wai-chee, Gee-choon Lau, and Nalliah M. “Local Distance Antimagic Cromatic Number of Join Product of Graphs With Cycles or Paths”. Hacettepe Journal of Mathematics and Statistics 53, no. 3 (June 2024): 788-802. https://doi.org/10.15672/hujms.1266085.
EndNote Shiu W-c, Lau G-c, M N (June 1, 2024) Local distance antimagic cromatic number of join product of graphs with cycles or paths. Hacettepe Journal of Mathematics and Statistics 53 3 788–802.
IEEE W.-c. Shiu, G.-c. Lau, and N. M, “Local distance antimagic cromatic number of join product of graphs with cycles or paths”, Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 3, pp. 788–802, 2024, doi: 10.15672/hujms.1266085.
ISNAD Shiu, Wai-chee et al. “Local Distance Antimagic Cromatic Number of Join Product of Graphs With Cycles or Paths”. Hacettepe Journal of Mathematics and Statistics 53/3 (June 2024), 788-802. https://doi.org/10.15672/hujms.1266085.
JAMA Shiu W-c, Lau G-c, M N. Local distance antimagic cromatic number of join product of graphs with cycles or paths. Hacettepe Journal of Mathematics and Statistics. 2024;53:788–802.
MLA Shiu, Wai-chee et al. “Local Distance Antimagic Cromatic Number of Join Product of Graphs With Cycles or Paths”. Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 3, 2024, pp. 788-02, doi:10.15672/hujms.1266085.
Vancouver Shiu W-c, Lau G-c, M N. Local distance antimagic cromatic number of join product of graphs with cycles or paths. Hacettepe Journal of Mathematics and Statistics. 2024;53(3):788-802.