Research Article
BibTex RIS Cite

Year 2025, Volume: 54 Issue: 4, 1345 - 1355, 29.08.2025
https://doi.org/10.15672/hujms.1483083

Abstract

Project Number

122F128

References

  • [1] M. Farber, Characterization of strongly chordal graphs, Discr. Math. 43, 173–189, 1983. https://doi.org/10.1016/0012-365X(83)90154-1
  • [2] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of domination in graphs. New York, USA: Marcel Dekker, 1998.
  • [3] H.T. Hà and A. Van Tuyl, Powers of componentwise linear ideals: the HerzogHibiOhsugi conjecture and related problems, Research in Mathematical Sciences 9, 22, 2022. https://doi.org/10.1007/s40687-022-00316-4
  • [4] J. Herzog and T. Hibi, Monomial ideals, Graduate Texts in Mathematics, 260. London, UK: Springer-Verlag, 2011.
  • [5] J. Honeycutt, S. K. Sather-Wagstaff, Closed neighborhood ideals of finite simple graphs, La Matematica 1, 387394, 2022. https://doi.org/10.1007/s44007-021-00008-5
  • [6] M. Nasernejad, A.A. Qureshi, Algebraic implications of neighborhood hypergraphs and their transversal hypergraphs, Communications in Algebra 52, 2328–2345, 2024. https://doi.org/10.1080/00927872.2023.2300760
  • [7] L. Sharifan and S. Moradi, Closed neighborhood ideal of a graph, Rocky Mountain Journal of Mathematics 50(3), 1097–1107, 2020. https://doi.org/10.1216/rmj.2020.50.1097
  • [8] L. Sharifan qnd M. Varbaro, Graded Betti numbers of ideals with linear quotients, Le Matematiche (Catania) 63(2), 257–265, 2008.
  • [9] N. Terai, Alexander duality theorem and Stanley-Reisner rings. Free resolution of coordinate rings of projective varieties and related topics (Japanese), Surikaisekikenkyusho Kokyuroku. 1078, 174–184, 1999.

Componentwise linearity of dominating ideals of path graphs

Year 2025, Volume: 54 Issue: 4, 1345 - 1355, 29.08.2025
https://doi.org/10.15672/hujms.1483083

Abstract

We show the componentwise linearity of dominating ideals of path graphs by describing a linear quotient order of their minimal generating sets. We also give formulas for their Betti numbers, regularity and projective dimension.

Ethical Statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supporting Institution

TUBITAK

Project Number

122F128

Thanks

This work is supported by The Scientific and Technological Research Council of Turkey - TUBITAK (Grant No: 122F128)

References

  • [1] M. Farber, Characterization of strongly chordal graphs, Discr. Math. 43, 173–189, 1983. https://doi.org/10.1016/0012-365X(83)90154-1
  • [2] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of domination in graphs. New York, USA: Marcel Dekker, 1998.
  • [3] H.T. Hà and A. Van Tuyl, Powers of componentwise linear ideals: the HerzogHibiOhsugi conjecture and related problems, Research in Mathematical Sciences 9, 22, 2022. https://doi.org/10.1007/s40687-022-00316-4
  • [4] J. Herzog and T. Hibi, Monomial ideals, Graduate Texts in Mathematics, 260. London, UK: Springer-Verlag, 2011.
  • [5] J. Honeycutt, S. K. Sather-Wagstaff, Closed neighborhood ideals of finite simple graphs, La Matematica 1, 387394, 2022. https://doi.org/10.1007/s44007-021-00008-5
  • [6] M. Nasernejad, A.A. Qureshi, Algebraic implications of neighborhood hypergraphs and their transversal hypergraphs, Communications in Algebra 52, 2328–2345, 2024. https://doi.org/10.1080/00927872.2023.2300760
  • [7] L. Sharifan and S. Moradi, Closed neighborhood ideal of a graph, Rocky Mountain Journal of Mathematics 50(3), 1097–1107, 2020. https://doi.org/10.1216/rmj.2020.50.1097
  • [8] L. Sharifan qnd M. Varbaro, Graded Betti numbers of ideals with linear quotients, Le Matematiche (Catania) 63(2), 257–265, 2008.
  • [9] N. Terai, Alexander duality theorem and Stanley-Reisner rings. Free resolution of coordinate rings of projective varieties and related topics (Japanese), Surikaisekikenkyusho Kokyuroku. 1078, 174–184, 1999.
There are 9 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Mathematics
Authors

Ayesha Asloob Qureshı 0000-0002-3400-2069

Aslı Musapaşaoğlu 0000-0002-1154-9256

Project Number 122F128
Early Pub Date April 11, 2025
Publication Date August 29, 2025
Submission Date May 13, 2024
Acceptance Date November 30, 2024
Published in Issue Year 2025 Volume: 54 Issue: 4

Cite

APA Qureshı, A. A., & Musapaşaoğlu, A. (2025). Componentwise linearity of dominating ideals of path graphs. Hacettepe Journal of Mathematics and Statistics, 54(4), 1345-1355. https://doi.org/10.15672/hujms.1483083
AMA Qureshı AA, Musapaşaoğlu A. Componentwise linearity of dominating ideals of path graphs. Hacettepe Journal of Mathematics and Statistics. August 2025;54(4):1345-1355. doi:10.15672/hujms.1483083
Chicago Qureshı, Ayesha Asloob, and Aslı Musapaşaoğlu. “Componentwise Linearity of Dominating Ideals of Path Graphs”. Hacettepe Journal of Mathematics and Statistics 54, no. 4 (August 2025): 1345-55. https://doi.org/10.15672/hujms.1483083.
EndNote Qureshı AA, Musapaşaoğlu A (August 1, 2025) Componentwise linearity of dominating ideals of path graphs. Hacettepe Journal of Mathematics and Statistics 54 4 1345–1355.
IEEE A. A. Qureshı and A. Musapaşaoğlu, “Componentwise linearity of dominating ideals of path graphs”, Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 4, pp. 1345–1355, 2025, doi: 10.15672/hujms.1483083.
ISNAD Qureshı, Ayesha Asloob - Musapaşaoğlu, Aslı. “Componentwise Linearity of Dominating Ideals of Path Graphs”. Hacettepe Journal of Mathematics and Statistics 54/4 (August2025), 1345-1355. https://doi.org/10.15672/hujms.1483083.
JAMA Qureshı AA, Musapaşaoğlu A. Componentwise linearity of dominating ideals of path graphs. Hacettepe Journal of Mathematics and Statistics. 2025;54:1345–1355.
MLA Qureshı, Ayesha Asloob and Aslı Musapaşaoğlu. “Componentwise Linearity of Dominating Ideals of Path Graphs”. Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 4, 2025, pp. 1345-5, doi:10.15672/hujms.1483083.
Vancouver Qureshı AA, Musapaşaoğlu A. Componentwise linearity of dominating ideals of path graphs. Hacettepe Journal of Mathematics and Statistics. 2025;54(4):1345-5.