Research Article
BibTex RIS Cite

Year 2025, Volume: 54 Issue: 5, 2108 - 2138, 29.10.2025
https://doi.org/10.15672/hujms.1673095

Abstract

References

  • [1] F. Akgül, Ş. Acıtaş and B. Şenoğlu, Inferences on stress–strength reliability based on ranked set sampling data in case of Lindley distribution, J. Stat. Comput. Simul. 88 (15), 3018–3032, 2018.
  • [2] F. Akgül and B. Şenoğlu, Inferences for stress–strength reliability of Burr type X distributions based on ranked set sampling, Commun. Stat. Simul. Comput. 51 (6), 3324–3340, 2022.
  • [3] H. Aljohani, Statistical inference for a novel distribution using ranked set sampling with applications, Heliyon 10 (5), 2024.
  • [4] A. Almarashi, M. Badr, M. Elgarhy, F. Jamal and Ch. Chesneau, Statistical inference of the half-logistic inverse Rayleigh distribution, Entropy 22 (4), 449, 2020.
  • [5] N. Alotaibi, I. Elbatal, M. Shrahili, A. Al-Moisheer, M. Elgarhy and E. Almetwally, Statistical inference for the Kavya–Manoharan Kumaraswamy model under ranked set sampling with applications, Symmetry 15 (3), 587, 2023.
  • [6] N. Alsadat, A. Hassan, M. Elgarhy, Ch. Chesneau and R. Mohamed, An efficient stress–strength reliability estimate of the unit Gompertz distribution using ranked set sampling, Symmetry 15 (5), 1121, 2023.
  • [7] R. Athirakrishnan and E. Abdul-Sathar, E-Bayesian and hierarchical Bayesian estimation of inverse Rayleigh distribution, Am. J. Math. Manag. Sci. 41 (1), 70–87, 2022.
  • [8] S. Bennett, Log-logistic regression models for survival data, J. R. Stat. Soc. Ser. C Appl. Stat. 32 (2), 165–171, 1983.
  • [9] Z. Chen, The efficiency of ranked-set sampling relative to simple random sampling under multi-parameter families, Statist. Sinica, 247–263, 2000.
  • [10] S. Dey, Bayesian estimation of the parameter and reliability function of an inverse Rayleigh distribution, Mal. J. Math. Sci. 6 (1), 113–124, 2012.
  • [11] S. Dorniani, A. Mohammadpour and N. Nematollahi, Estimation of the parameter of Lévy distribution using ranked set sampling, AUT J. Math. Comput. 2 (1), 53–60, 2021.
  • [12] B. Efron, Logistic regression, survival analysis, and the Kaplan–Meier curve, J. Am. Stat. Assoc. 83 (402), 414–425, 1988.
  • [13] R. EL-Sagheer and M. Mansour, The efficacy measurement of treatment methods: an application to stress-strength model, Appl. Math. Inf. Sci. 14 (3), 487–492, 2020.
  • [14] V. Vodă, On the inverse Rayleigh distributed random variable, Rep. Stat. Appl. Res. 19 (4), 13–21, 1972.
  • [15] I. Gradshteyn and I. Ryzhik, Table Of Integrals, Series And Products, Academic Press, Boston, 1994.
  • [16] A. S. Hassan, I. M. Almanjahie, A. I. Al-Omari, L. Alzoubi and H. F. Nagy, Stress– strength modeling using median-ranked set sampling: estimation, simulation, and application, Mathematics 11 (2), 318, 2023.
  • [17] H. Muttlak, Median ranked set sampling, J. Appl. Stat. Sci. 6, 245–255, 1997.
  • [18] O. Mahmoud Hassan, I. Elbatal, A. Al-Nefaie and M. Elgarhy, On the Kavya– Manoharan–Burr X model: estimations under ranked set sampling and applications, J. Risk Financ. Manag. 16 (1), 19, 2022.
  • [19] N. Jana and S. Bera, Estimation of parameters of inverse Weibull distribution and application to multi-component stress-strength model, J. Appl. Stat. 49 (1), 169–194, 2022.
  • [20] H. Kadem and N. Karam, Cascade stress-strength system reliability estimation of inverse Rayleigh distribution, J. Adv. Sci. Eng. Technol. 3 (2), 9–19, 2020.
  • [21] B. Kalaf, S. Raheem and A. Salman, Estimation of the reliability system in model of stress-strength according to distribution of inverse Rayleigh, Period. Eng. Nat. Sci. 9 (2), 524–533, 2021.
  • [22] K. Kamalja and R. Koshti, Application of ranked set sampling in parameter estimation of Cambanis-type bivariate exponential distribution, Statistica 82 (2), 145–175, 2022.
  • [23] K. Karakaya, İ. Kınacı, Y. Akdoğan, B. Saraçoğlu and C.Kuş, Statistical inference on process capability index CPYK for inverse Rayleigh distribution under progressive censoring, Pak. J. Stat. Oper. Res., 37–47, 2024.
  • [24] A. Langlands, S. Pocock, G. Kerr and S. Gore, Long-term survival of patients with breast cancer: a study of the curability of the disease, Br. Med. J. 2 (6200), 1247–1251, 1979.
  • [25] F. Maleki Jebely, K. Zare and E. Deiri, Efficient estimation of the PDF and the CDF of the inverse Rayleigh distribution, J. Stat. Comput. Simul. 88 (1), 75–88, 2018.
  • [26] G. McIntyre, A method for unbiased selective sampling, using ranked sets, Aust. J. Agric. Res. 3 (4), 385–390, 1952.
  • [27] K. Mehrotra and P. Nanda, Unbiased estimation of parameters by order statistics in the case of censored samples, Biometrika, 601–606, 1974.
  • [28] Y. A. Özdemir, M. Ebegil and F. Gökpinar, A test statistic for two normal means with median ranked set sampling, Iran. J. Sci. Technol., Trans. A 43, 1109–1126, 2019.
  • [29] Z. Pakdaman and R. Alizadeh Noughabi, Estimation of the stress-strength reliability for the Levy distribution based on the ranked set sampling, J. Stat. Modelling Theory Appl. 3 (2), 71–83, 2022.
  • [30] Z. Pakdaman and R. Alizadeh Noughabi, On the study of the stress-strength reliability in Weibull-f models, Hacettepe J. Math. Stat. 53 (1), 269–288, 2023.
  • [31] V. Pedroso, C. Taconeli and S. Giolo, Estimation based on ranked set sampling for the two-parameter Birnbaum–Saunders distribution, J. Stat. Comput. Simul. 91 (2), 316–333, 2021.
  • [32] C. R. Rao, Linear Statistical Inference and Its Applications, John Wiley & Sons Inc, 1965.
  • [33] M. Sabry, E. Almetwally, O. Alamri, M. Yusuf, H. Almongy and A. Eldeeb, Inference of fuzzy reliability model for inverse Rayleigh distribution, AIMS Math. 6 (9), 9770– 9785, 2021.
  • [34] H. Samawi, M. Al-Saleh and O. Al-Saidy, The matched pair sign test using bivariate ranked set sampling for different ranking based schemes, Stat. Methodol. 6 (4), 397– 407, 2009.
  • [35] A. Soliman, E. Amin and A. Abd-El Aziz, Estimation and prediction from inverse Rayleigh distribution based on lower record values, Appl. Math. Sci. 4 (62), 3057–3066, 2010.
  • [36] G. Rao, R. Kantam, K. Rosaiah and J. Reddy, Estimation of reliability in multicomponent stress-strength based on inverse Rayleigh distribution, J. Stat. Appl. Probab. 2 (3), 261, 2013.
  • [37] G. Rao, R. Kantam, K. Rosaiah and J. Reddy, Estimation of stress–strength reliability from inverse Rayleigh distribution, J. Ind. Prod. Eng. 30 (4), 256–263, 2013.
  • [38] C. Taconeli, Dual-rank ranked set sampling, J. Stat. Comput. Simul. 94 (1), 29–49, 2024.
  • [39] B. Tarvirdizade and H. Kazemzadeh Garehchobogh, Interval estimation of stressstrength reliability based on lower record values from inverse Rayleigh distribution, J. Qual. Reliab. Eng. 2014 (1), 192072, 2014.
  • [40] V. Trayer, Inverse Rayleigh model, Proc. Acad. Sci., Dokl. Akad. Nauk Belarus, USSR, 1964.
  • [41] Sh. Wu and Ch. Wu, Two stage multiple comparisons with the average for exponential location parameters under heteroscedasticity, J. Stat. Plan. Inference 134 (2), 392– 408, 2005.

On estimation $R=P(X>Y)$ under classical and median ranked set sampling based on inverse Rayleigh distribution

Year 2025, Volume: 54 Issue: 5, 2108 - 2138, 29.10.2025
https://doi.org/10.15672/hujms.1673095

Abstract

In this effort, we estimate $R = P(X > Y)$ under the classical and median ranked set sampling schemes, assuming that $X$ and $Y$ follow the inverse Rayleigh distribution. To address this, we derive the maximum likelihood estimator of $R$ using iterative algorithms due to the lack of a closed-form expression. We also employ a modified maximum likelihood approach as an alternative, allowing a closed-form estimator for $R$. A simulation study compares the performance of the $R$ estimators under both classical and median ranked set sampling schemes and simple random sampling, including an evaluation of asymptotic confidence intervals. Furthermore, acknowledging that perfect ranking is often unrealistic, we extend the study by incorporating an imperfect ranking model based on probabilistic misclassification. Finally, two real data examples are presented to illustrate and support the simulation results.

References

  • [1] F. Akgül, Ş. Acıtaş and B. Şenoğlu, Inferences on stress–strength reliability based on ranked set sampling data in case of Lindley distribution, J. Stat. Comput. Simul. 88 (15), 3018–3032, 2018.
  • [2] F. Akgül and B. Şenoğlu, Inferences for stress–strength reliability of Burr type X distributions based on ranked set sampling, Commun. Stat. Simul. Comput. 51 (6), 3324–3340, 2022.
  • [3] H. Aljohani, Statistical inference for a novel distribution using ranked set sampling with applications, Heliyon 10 (5), 2024.
  • [4] A. Almarashi, M. Badr, M. Elgarhy, F. Jamal and Ch. Chesneau, Statistical inference of the half-logistic inverse Rayleigh distribution, Entropy 22 (4), 449, 2020.
  • [5] N. Alotaibi, I. Elbatal, M. Shrahili, A. Al-Moisheer, M. Elgarhy and E. Almetwally, Statistical inference for the Kavya–Manoharan Kumaraswamy model under ranked set sampling with applications, Symmetry 15 (3), 587, 2023.
  • [6] N. Alsadat, A. Hassan, M. Elgarhy, Ch. Chesneau and R. Mohamed, An efficient stress–strength reliability estimate of the unit Gompertz distribution using ranked set sampling, Symmetry 15 (5), 1121, 2023.
  • [7] R. Athirakrishnan and E. Abdul-Sathar, E-Bayesian and hierarchical Bayesian estimation of inverse Rayleigh distribution, Am. J. Math. Manag. Sci. 41 (1), 70–87, 2022.
  • [8] S. Bennett, Log-logistic regression models for survival data, J. R. Stat. Soc. Ser. C Appl. Stat. 32 (2), 165–171, 1983.
  • [9] Z. Chen, The efficiency of ranked-set sampling relative to simple random sampling under multi-parameter families, Statist. Sinica, 247–263, 2000.
  • [10] S. Dey, Bayesian estimation of the parameter and reliability function of an inverse Rayleigh distribution, Mal. J. Math. Sci. 6 (1), 113–124, 2012.
  • [11] S. Dorniani, A. Mohammadpour and N. Nematollahi, Estimation of the parameter of Lévy distribution using ranked set sampling, AUT J. Math. Comput. 2 (1), 53–60, 2021.
  • [12] B. Efron, Logistic regression, survival analysis, and the Kaplan–Meier curve, J. Am. Stat. Assoc. 83 (402), 414–425, 1988.
  • [13] R. EL-Sagheer and M. Mansour, The efficacy measurement of treatment methods: an application to stress-strength model, Appl. Math. Inf. Sci. 14 (3), 487–492, 2020.
  • [14] V. Vodă, On the inverse Rayleigh distributed random variable, Rep. Stat. Appl. Res. 19 (4), 13–21, 1972.
  • [15] I. Gradshteyn and I. Ryzhik, Table Of Integrals, Series And Products, Academic Press, Boston, 1994.
  • [16] A. S. Hassan, I. M. Almanjahie, A. I. Al-Omari, L. Alzoubi and H. F. Nagy, Stress– strength modeling using median-ranked set sampling: estimation, simulation, and application, Mathematics 11 (2), 318, 2023.
  • [17] H. Muttlak, Median ranked set sampling, J. Appl. Stat. Sci. 6, 245–255, 1997.
  • [18] O. Mahmoud Hassan, I. Elbatal, A. Al-Nefaie and M. Elgarhy, On the Kavya– Manoharan–Burr X model: estimations under ranked set sampling and applications, J. Risk Financ. Manag. 16 (1), 19, 2022.
  • [19] N. Jana and S. Bera, Estimation of parameters of inverse Weibull distribution and application to multi-component stress-strength model, J. Appl. Stat. 49 (1), 169–194, 2022.
  • [20] H. Kadem and N. Karam, Cascade stress-strength system reliability estimation of inverse Rayleigh distribution, J. Adv. Sci. Eng. Technol. 3 (2), 9–19, 2020.
  • [21] B. Kalaf, S. Raheem and A. Salman, Estimation of the reliability system in model of stress-strength according to distribution of inverse Rayleigh, Period. Eng. Nat. Sci. 9 (2), 524–533, 2021.
  • [22] K. Kamalja and R. Koshti, Application of ranked set sampling in parameter estimation of Cambanis-type bivariate exponential distribution, Statistica 82 (2), 145–175, 2022.
  • [23] K. Karakaya, İ. Kınacı, Y. Akdoğan, B. Saraçoğlu and C.Kuş, Statistical inference on process capability index CPYK for inverse Rayleigh distribution under progressive censoring, Pak. J. Stat. Oper. Res., 37–47, 2024.
  • [24] A. Langlands, S. Pocock, G. Kerr and S. Gore, Long-term survival of patients with breast cancer: a study of the curability of the disease, Br. Med. J. 2 (6200), 1247–1251, 1979.
  • [25] F. Maleki Jebely, K. Zare and E. Deiri, Efficient estimation of the PDF and the CDF of the inverse Rayleigh distribution, J. Stat. Comput. Simul. 88 (1), 75–88, 2018.
  • [26] G. McIntyre, A method for unbiased selective sampling, using ranked sets, Aust. J. Agric. Res. 3 (4), 385–390, 1952.
  • [27] K. Mehrotra and P. Nanda, Unbiased estimation of parameters by order statistics in the case of censored samples, Biometrika, 601–606, 1974.
  • [28] Y. A. Özdemir, M. Ebegil and F. Gökpinar, A test statistic for two normal means with median ranked set sampling, Iran. J. Sci. Technol., Trans. A 43, 1109–1126, 2019.
  • [29] Z. Pakdaman and R. Alizadeh Noughabi, Estimation of the stress-strength reliability for the Levy distribution based on the ranked set sampling, J. Stat. Modelling Theory Appl. 3 (2), 71–83, 2022.
  • [30] Z. Pakdaman and R. Alizadeh Noughabi, On the study of the stress-strength reliability in Weibull-f models, Hacettepe J. Math. Stat. 53 (1), 269–288, 2023.
  • [31] V. Pedroso, C. Taconeli and S. Giolo, Estimation based on ranked set sampling for the two-parameter Birnbaum–Saunders distribution, J. Stat. Comput. Simul. 91 (2), 316–333, 2021.
  • [32] C. R. Rao, Linear Statistical Inference and Its Applications, John Wiley & Sons Inc, 1965.
  • [33] M. Sabry, E. Almetwally, O. Alamri, M. Yusuf, H. Almongy and A. Eldeeb, Inference of fuzzy reliability model for inverse Rayleigh distribution, AIMS Math. 6 (9), 9770– 9785, 2021.
  • [34] H. Samawi, M. Al-Saleh and O. Al-Saidy, The matched pair sign test using bivariate ranked set sampling for different ranking based schemes, Stat. Methodol. 6 (4), 397– 407, 2009.
  • [35] A. Soliman, E. Amin and A. Abd-El Aziz, Estimation and prediction from inverse Rayleigh distribution based on lower record values, Appl. Math. Sci. 4 (62), 3057–3066, 2010.
  • [36] G. Rao, R. Kantam, K. Rosaiah and J. Reddy, Estimation of reliability in multicomponent stress-strength based on inverse Rayleigh distribution, J. Stat. Appl. Probab. 2 (3), 261, 2013.
  • [37] G. Rao, R. Kantam, K. Rosaiah and J. Reddy, Estimation of stress–strength reliability from inverse Rayleigh distribution, J. Ind. Prod. Eng. 30 (4), 256–263, 2013.
  • [38] C. Taconeli, Dual-rank ranked set sampling, J. Stat. Comput. Simul. 94 (1), 29–49, 2024.
  • [39] B. Tarvirdizade and H. Kazemzadeh Garehchobogh, Interval estimation of stressstrength reliability based on lower record values from inverse Rayleigh distribution, J. Qual. Reliab. Eng. 2014 (1), 192072, 2014.
  • [40] V. Trayer, Inverse Rayleigh model, Proc. Acad. Sci., Dokl. Akad. Nauk Belarus, USSR, 1964.
  • [41] Sh. Wu and Ch. Wu, Two stage multiple comparisons with the average for exponential location parameters under heteroscedasticity, J. Stat. Plan. Inference 134 (2), 392– 408, 2005.
There are 41 citations in total.

Details

Primary Language English
Subjects Applied Statistics
Journal Section Statistics
Authors

Hossein Pasha-zanoosi 0000-0003-3331-1895

Early Pub Date September 22, 2025
Publication Date October 29, 2025
Submission Date April 10, 2025
Acceptance Date September 20, 2025
Published in Issue Year 2025 Volume: 54 Issue: 5

Cite

APA Pasha-zanoosi, H. (2025). On estimation $R=P(X>Y)$ under classical and median ranked set sampling based on inverse Rayleigh distribution. Hacettepe Journal of Mathematics and Statistics, 54(5), 2108-2138. https://doi.org/10.15672/hujms.1673095
AMA Pasha-zanoosi H. On estimation $R=P(X>Y)$ under classical and median ranked set sampling based on inverse Rayleigh distribution. Hacettepe Journal of Mathematics and Statistics. October 2025;54(5):2108-2138. doi:10.15672/hujms.1673095
Chicago Pasha-zanoosi, Hossein. “On Estimation $R=P(X>Y)$ under Classical and Median Ranked Set Sampling Based on Inverse Rayleigh Distribution”. Hacettepe Journal of Mathematics and Statistics 54, no. 5 (October 2025): 2108-38. https://doi.org/10.15672/hujms.1673095.
EndNote Pasha-zanoosi H (October 1, 2025) On estimation $R=P(X>Y)$ under classical and median ranked set sampling based on inverse Rayleigh distribution. Hacettepe Journal of Mathematics and Statistics 54 5 2108–2138.
IEEE H. Pasha-zanoosi, “On estimation $R=P(X>Y)$ under classical and median ranked set sampling based on inverse Rayleigh distribution”, Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 5, pp. 2108–2138, 2025, doi: 10.15672/hujms.1673095.
ISNAD Pasha-zanoosi, Hossein. “On Estimation $R=P(X>Y)$ under Classical and Median Ranked Set Sampling Based on Inverse Rayleigh Distribution”. Hacettepe Journal of Mathematics and Statistics 54/5 (October2025), 2108-2138. https://doi.org/10.15672/hujms.1673095.
JAMA Pasha-zanoosi H. On estimation $R=P(X>Y)$ under classical and median ranked set sampling based on inverse Rayleigh distribution. Hacettepe Journal of Mathematics and Statistics. 2025;54:2108–2138.
MLA Pasha-zanoosi, Hossein. “On Estimation $R=P(X>Y)$ under Classical and Median Ranked Set Sampling Based on Inverse Rayleigh Distribution”. Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 5, 2025, pp. 2108-3, doi:10.15672/hujms.1673095.
Vancouver Pasha-zanoosi H. On estimation $R=P(X>Y)$ under classical and median ranked set sampling based on inverse Rayleigh distribution. Hacettepe Journal of Mathematics and Statistics. 2025;54(5):2108-3.