Anyonik tuzlarla beslenen gebe düvelerde metabolik değişikliklerin izlenmesinde dışkı pH’sı, idrar pH’sına alternatif bir gösterge olarak kullanılabilir mi?
Year 2025,
Volume: 14 Issue: 2, 163 - 168, 24.12.2025
Emre Yılmaz
,
Soner Uysal
,
Ayşe Uysal
,
Bülent Balli
Abstract
Bu çalışma, anyonik tuz takviyesinin gebe düvelerde idrar pH’sı, serum Brix değerleri, seçilmiş serum parametreleri ve dışkı özellikleri üzerindeki etkisini incelemiştir. Araştırma, doğumdan önceki son 14 gün boyunca 8 düve ile yürütülmüştür. Hayvanlara ya normal bir diyet ya da hafif metabolik asidoz oluşturacak şekilde formüle edilmiş anyonik bir diyet (150 g/gün amonyum klorür) uygulanmıştır. Deneme süreci başlamadan 7 gün önce anyonik tuzlar verilmeye başlanarak hayvanların anyonik diyete adaptasyonu sağlanmıştır. Doğumdan yaklaşık üç gün önce kan, idrar ve dışkı örnekleri alınarak biyokimyasal ve fiziksel analizler yapılmıştır. Bulgular, anyonik diyetle beslenen düvelerin idrar pH’sının normal diyetle beslenenlere göre anlamlı şekilde daha düşük olduğunu göstermiştir; bu durum beklenen metabolik asidifikasyonu doğrulamaktadır. Ayrıca, anyonik diyet grubunda serum klorür düzeyleri anlamlı şekilde daha yüksek bulunmuştur (p<0.05), ancak kalsiyum ve fosfor gibi diğer biyokimyasal parametrelerde anlamlı bir değişiklik gözlenmemiştir. Aniyonik diyet dışkı partikül büyüklüğü dağılımını da etkilemiş; büyük partikül oranında anlamlı bir azalma, orta büyüklükteki partiküllerde ise artış gözlenmiştir (p<0.05). Sonuçlar, anyonik diyetlere yanıt olarak ortaya çıkan metabolik değişikliklerin izlenmesinde idrar pH’sının daha doğru bir gösterge olduğunu, dışkı özelliklerinin ise ikincil belirteçler olarak değerlendirilebileceğini göstermektedir. Dışkı pH’sının anyonik beslemeden daha az etkilenmiş olması, sistemik asit-baz dengesi açısından güvenilir bir belirteç olmayabileceğini düşündürmektedir.
Project Number
Proje ile desteklenmemiştir.
References
-
AOAC, 1998: Officinal Methods of Analysis (16th Edition), AOAC International, Gaithersburg, MD, 1998.
-
Belenguer A, Duncan SH, Holtrop G, Anderson SE, Lobley GE, Flint HJ, 2007: Impact of pH on lactate formation and utilization by human fecal microbial communities. Appl Envir Micr, 73(20), 6526-6533.
-
Charbonneau E, Pellerin D, Oetzel, GR, 2006: Impact of lowering dietary cation-anion difference in nonlactating dairy cows: A meta-analysis. J Dairy Sci, 89(2), 537-548.
-
Gelfert CC, Loeffler SL, Frömer S, Engel M, Hartmann H, Männer K, Baumgartner W, Staufenbiel R, 2007: The impact of dietary cation anion difference (DCAD) on the acid-base balance and calcium metabolism of non-lactating, non-pregnant dairy cows fed equal amounts of different anionic salts. J Dairy Res, 74(3), 311-322.
-
Goff JP, 2000: Pathophysiology of calcium and phosphorus disorders. Vet Cli North Am: Food Anim Pract, 16(2), 319–337.
-
Goff JP, 2006: Macromineral physiology and application to the feeding of the dairy cow for prevention of milk fever and other periparturient mineral disorders. Anim Feed Sci Tech, 126(3-4), 237-257.
-
Goff, J. P. (2008). The monitoring, prevention, and treatment of milk fever and subclinical hypocalcemia in dairy cows. The veterinary journal, 176(1), 50-57.
-
Khorrami B, Kheirandish P, Zebeli Q, Castillo-Lopez E, 2022: Variations in fecal pH and fecal particle size due to changes in dietary starch: Their potential as an on-farm tool for assessing the risk of ruminal acidosis in dairy cattle. Res Vet Sci, 152, 678-686.
-
Lean IJ, Santos JEP, Block E, Golder HM, 2019: Effects of prepartum dietary cation-anion difference intake on production and health of dairy cows: A meta-analysis. J Dairy Sci, 102(3), 2103-2133.
-
Le Cozler Y, Lollivier V, Lacasse P, Disenhaus C, 2008: Rearing strategy and optimizing first-calving targets in dairy heifers: a review. Animal, 2(9), 1393-1404.
-
Lee C, Copelin JE, Rebelo LR, Weiss WP, 2021: Effects of feeding a diet with reduced dietary cation and anion difference to lactating cows on production, nutrient digestibility, and ammonia emissions from manure. Anim Feed Sci Tech, 280, 115068.
-
Leno BM, Ryan CM, Stokol T, Kirk D, Zanzalari KP, Chapman JD, Overton TR, 2017: Effects of prepartum dietary cation-anion difference on aspects of peripartum mineral and energy metabolism and performance of multiparous Holstein cows. J Dairy Sci, 100(6), 4604-4622.
-
Moore SJ, VandeHaar MJ, Sharma BK, Pilbeam TE, Beede DK, Bucholtz HF, Liesman JS, Horst RL, Goff JP, 2000: Effects of altering dietary cation-anion difference on calcium and energy metabolism in peripartum cows. J Dairy Sci, 83(9), 2095-2104.
-
Owens FN, Secrist DS, Hill WJ, Gill DR, 1998. Acidosis in cattle: a review. J Anim Sci, 76(1), 275-286.
-
Toto RD, Hulter HN, Mackie S, Sebastian A, 1984: Renal tubular acidosis induced by dietary chloride. Kidney Int, 25(1), 26-32.
-
Tucker WB, Harrison GA, Hemken RW, 1988: Influence of dietary cation-anion balance on milk, blood, urine, and rumen fluid in lactating dairy cattle. J Dairy Sci, 71(2), 346-354.
-
Wang Y, Zheng W, Duan H, Luo J, Yin Y, Shen J, Mao S, Zhu W, Yu, Z, 2025: Effects of increasing levels of dietary cation-anion difference on growth performance, nutrient digestibility, rumen fermentation, and rumen microbiota in fattening Hu Sheep. Anim Nutr. 21(6), 119-128.
-
Warner AL, Beck PA, Foote AP, Pierce KN, Robison CA, Hubbell DS, Wilson BK, 2020: Effects of utilizing cotton byproducts in a finishing diet on beef cattle performance, carcass traits, fecal characteristics, and plasma metabolites. J Anim Sci, 98(2), skaa038.
-
Wilm J, Costa JH, Neave HW, Weary DM, von Keyserlingk MA, 2018: Serum total protein and immunoglobulin G concentrations in neonatal dairy calves over the first 10 days of age. J Dairy Sci, 101(7), 6430-6436.
-
Van Soest PV, Robertson JB, Lewis BA, 1991: Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci, 74(10), 3583-3597.
-
Yamamura R, Inoue KY, Nishino K, Yamasaki S, 2023: Intestinal and fecal pH in human health. Front Microb, 2, 1192316.
-
Yang K, Tian X, Ma Z, Wu, W, 2021: Feeding a negative dietary cation-anion difference to female goats is feasible, as indicated by the non-deleterious effect on rumen fermentation and rumen microbial population and increased plasma calcium level. Animals, 11(3), 664.
-
Zhao L, Sun L, Chu X, 2009: Chemiluminescence immunoassay. Trends Analyt Chem, 28(4), 404-415.
-
Zynda HM, Copelin JE, Weiss WP, Sun F, Lee C, 2022: Effects of reducing dietary cation-anion difference on lactation performance and nutrient digestibility of lactating cows and ammonia emissions from manure. J Dairy Sci, 105(5), 4016-4031.
Can Fecal Ph Be Used As An Alternative Indicator To Urine Ph For Monitoring Metabolic Changes In Pregnant Heifers Fed Anionic Salts?
Year 2025,
Volume: 14 Issue: 2, 163 - 168, 24.12.2025
Emre Yılmaz
,
Soner Uysal
,
Ayşe Uysal
,
Bülent Balli
Abstract
This study examined the impact of anionic salt supplementation on urine pH, serum Brix values, selected serum parameters, and fecal characteristics in pregnant heifers. The research involved 8 heifers during the last 14 days prior to calving. The animals received either a control diet (without anionic salts) or an anionic diet (150 g/day ammonium chloride), which was formulated to induce a mild metabolic acidosis. Anionic salts were administered 7 days prior to the experimental period to facilitate the animals' adaptation to the anionic diet. Blood, urine, and fecal samples were collected approximately three days before parturition for biochemical and physical analysis. The results indicated that heifers fed an anionic diet had significantly lower urine pH compared to those on a normal diet, confirming the expected metabolic acidification. Additionally, serum chloride levels were significantly higher in the anionic diet group (p<0.05), while other biochemical parameters, including calcium and phosphorus, remained unchanged. The anionic diet also influenced fecal particle size distribution, leading to a significant reduction in large particles and an increase in medium-sized particles (p<0.05). These findings suggest that urinary pH is a more accurate indicator of metabolic changes in response to anionic diets, whereas fecal characteristics may serve as secondary markers. The fact that fecal pH was less affected by anionic feeding suggests that it may not be a reliable marker for systemic acid-base balance.
Ethical Statement
This study was granted approval by the Local Animal Ethics Committee of Atatürk University, Turkey (approval no: 2024/08-205).
Project Number
Proje ile desteklenmemiştir.
Thanks
We thank the Atatürk University Cattle Farm for providing animals; Prof. Dr. Nurinnisa Öztürk and the Department of Biochemistry, Faculty of Medicine, for support with serum analyses; and Mr. Ali Kaya from the Department of Animal Science, Faculty of Agriculture, for assistance with feed analyses. This study was partially presented at the 8th National & 4th International Herd Health and Management Congress (Poster Presentation, November 07–10, 2024, Antalya, Turkey).
References
-
AOAC, 1998: Officinal Methods of Analysis (16th Edition), AOAC International, Gaithersburg, MD, 1998.
-
Belenguer A, Duncan SH, Holtrop G, Anderson SE, Lobley GE, Flint HJ, 2007: Impact of pH on lactate formation and utilization by human fecal microbial communities. Appl Envir Micr, 73(20), 6526-6533.
-
Charbonneau E, Pellerin D, Oetzel, GR, 2006: Impact of lowering dietary cation-anion difference in nonlactating dairy cows: A meta-analysis. J Dairy Sci, 89(2), 537-548.
-
Gelfert CC, Loeffler SL, Frömer S, Engel M, Hartmann H, Männer K, Baumgartner W, Staufenbiel R, 2007: The impact of dietary cation anion difference (DCAD) on the acid-base balance and calcium metabolism of non-lactating, non-pregnant dairy cows fed equal amounts of different anionic salts. J Dairy Res, 74(3), 311-322.
-
Goff JP, 2000: Pathophysiology of calcium and phosphorus disorders. Vet Cli North Am: Food Anim Pract, 16(2), 319–337.
-
Goff JP, 2006: Macromineral physiology and application to the feeding of the dairy cow for prevention of milk fever and other periparturient mineral disorders. Anim Feed Sci Tech, 126(3-4), 237-257.
-
Goff, J. P. (2008). The monitoring, prevention, and treatment of milk fever and subclinical hypocalcemia in dairy cows. The veterinary journal, 176(1), 50-57.
-
Khorrami B, Kheirandish P, Zebeli Q, Castillo-Lopez E, 2022: Variations in fecal pH and fecal particle size due to changes in dietary starch: Their potential as an on-farm tool for assessing the risk of ruminal acidosis in dairy cattle. Res Vet Sci, 152, 678-686.
-
Lean IJ, Santos JEP, Block E, Golder HM, 2019: Effects of prepartum dietary cation-anion difference intake on production and health of dairy cows: A meta-analysis. J Dairy Sci, 102(3), 2103-2133.
-
Le Cozler Y, Lollivier V, Lacasse P, Disenhaus C, 2008: Rearing strategy and optimizing first-calving targets in dairy heifers: a review. Animal, 2(9), 1393-1404.
-
Lee C, Copelin JE, Rebelo LR, Weiss WP, 2021: Effects of feeding a diet with reduced dietary cation and anion difference to lactating cows on production, nutrient digestibility, and ammonia emissions from manure. Anim Feed Sci Tech, 280, 115068.
-
Leno BM, Ryan CM, Stokol T, Kirk D, Zanzalari KP, Chapman JD, Overton TR, 2017: Effects of prepartum dietary cation-anion difference on aspects of peripartum mineral and energy metabolism and performance of multiparous Holstein cows. J Dairy Sci, 100(6), 4604-4622.
-
Moore SJ, VandeHaar MJ, Sharma BK, Pilbeam TE, Beede DK, Bucholtz HF, Liesman JS, Horst RL, Goff JP, 2000: Effects of altering dietary cation-anion difference on calcium and energy metabolism in peripartum cows. J Dairy Sci, 83(9), 2095-2104.
-
Owens FN, Secrist DS, Hill WJ, Gill DR, 1998. Acidosis in cattle: a review. J Anim Sci, 76(1), 275-286.
-
Toto RD, Hulter HN, Mackie S, Sebastian A, 1984: Renal tubular acidosis induced by dietary chloride. Kidney Int, 25(1), 26-32.
-
Tucker WB, Harrison GA, Hemken RW, 1988: Influence of dietary cation-anion balance on milk, blood, urine, and rumen fluid in lactating dairy cattle. J Dairy Sci, 71(2), 346-354.
-
Wang Y, Zheng W, Duan H, Luo J, Yin Y, Shen J, Mao S, Zhu W, Yu, Z, 2025: Effects of increasing levels of dietary cation-anion difference on growth performance, nutrient digestibility, rumen fermentation, and rumen microbiota in fattening Hu Sheep. Anim Nutr. 21(6), 119-128.
-
Warner AL, Beck PA, Foote AP, Pierce KN, Robison CA, Hubbell DS, Wilson BK, 2020: Effects of utilizing cotton byproducts in a finishing diet on beef cattle performance, carcass traits, fecal characteristics, and plasma metabolites. J Anim Sci, 98(2), skaa038.
-
Wilm J, Costa JH, Neave HW, Weary DM, von Keyserlingk MA, 2018: Serum total protein and immunoglobulin G concentrations in neonatal dairy calves over the first 10 days of age. J Dairy Sci, 101(7), 6430-6436.
-
Van Soest PV, Robertson JB, Lewis BA, 1991: Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci, 74(10), 3583-3597.
-
Yamamura R, Inoue KY, Nishino K, Yamasaki S, 2023: Intestinal and fecal pH in human health. Front Microb, 2, 1192316.
-
Yang K, Tian X, Ma Z, Wu, W, 2021: Feeding a negative dietary cation-anion difference to female goats is feasible, as indicated by the non-deleterious effect on rumen fermentation and rumen microbial population and increased plasma calcium level. Animals, 11(3), 664.
-
Zhao L, Sun L, Chu X, 2009: Chemiluminescence immunoassay. Trends Analyt Chem, 28(4), 404-415.
-
Zynda HM, Copelin JE, Weiss WP, Sun F, Lee C, 2022: Effects of reducing dietary cation-anion difference on lactation performance and nutrient digestibility of lactating cows and ammonia emissions from manure. J Dairy Sci, 105(5), 4016-4031.