In the article, we perform a classification of algebras with dimensions $\leq$ 3 and with the property that each element is colinear with its square. The classification is complete up to properties of the ground field.
Cedılnık, A. (2023). Classification of three-dimensional isopotent algebras. International Electronic Journal of Algebra, 33(33), 226-246. https://doi.org/10.24330/ieja.1217445
AMA
Cedılnık A. Classification of three-dimensional isopotent algebras. IEJA. January 2023;33(33):226-246. doi:10.24330/ieja.1217445
Chicago
Cedılnık, Anton. “Classification of Three-Dimensional Isopotent Algebras”. International Electronic Journal of Algebra 33, no. 33 (January 2023): 226-46. https://doi.org/10.24330/ieja.1217445.
EndNote
Cedılnık A (January 1, 2023) Classification of three-dimensional isopotent algebras. International Electronic Journal of Algebra 33 33 226–246.
IEEE
A. Cedılnık, “Classification of three-dimensional isopotent algebras”, IEJA, vol. 33, no. 33, pp. 226–246, 2023, doi: 10.24330/ieja.1217445.
ISNAD
Cedılnık, Anton. “Classification of Three-Dimensional Isopotent Algebras”. International Electronic Journal of Algebra 33/33 (January 2023), 226-246. https://doi.org/10.24330/ieja.1217445.
JAMA
Cedılnık A. Classification of three-dimensional isopotent algebras. IEJA. 2023;33:226–246.
MLA
Cedılnık, Anton. “Classification of Three-Dimensional Isopotent Algebras”. International Electronic Journal of Algebra, vol. 33, no. 33, 2023, pp. 226-4, doi:10.24330/ieja.1217445.
Vancouver
Cedılnık A. Classification of three-dimensional isopotent algebras. IEJA. 2023;33(33):226-4.