Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, , 71 - 87, 10.07.2023
https://doi.org/10.24330/ieja.1281654

Öz

Kaynakça

  • G. Almkvist, Endomorphisms of finitely generated projective modules over a commutative ring, Ark. Mat., 11 (1973), 263-301.
  • A. J. Diesl, Nil clean rings, J. Algebra, 383 (2013), 197-211.
  • K. Matthews, Solving the Diophantine equation $ax^{2}+bxy+cy^{2}+dx+ey+f=0$, preprint, 2015-2020.
  • K. Matthews, http://www.numbertheory.org/php/generalquadratic.html.
  • J. Ster, Rings in which nilpotents form a subring, Carpathian J. Math., 31(2) (2015), 157-163.

Unipotent diagonalization of matrices

Yıl 2023, , 71 - 87, 10.07.2023
https://doi.org/10.24330/ieja.1281654

Öz

An element $u$ of a ring $R$ is called \textsl{unipotent} if $u-1$ is
nilpotent. Two elements $a,b\in R$ are called \textsl{unipotent equivalent}
if there exist unipotents $p,q\in R$ such that $b=q^{-1}ap$. Two square
matrices $A,B$ are called \textsl{strongly unipotent equivalent} if there
are unipotent triangular matrices $P,Q$ with $B=Q^{-1}AP$.
In this paper, over commutative reduced rings, we characterize the matrices
which are strongly unipotent equivalent to diagonal matrices. For $2\times 2$
matrices over B\'{e}zout domains, we characterize the nilpotent matrices
unipotent equivalent to some multiples of $E_{12}$ and the nontrivial
idempotents unipotent equivalent to $E_{11}$.

Kaynakça

  • G. Almkvist, Endomorphisms of finitely generated projective modules over a commutative ring, Ark. Mat., 11 (1973), 263-301.
  • A. J. Diesl, Nil clean rings, J. Algebra, 383 (2013), 197-211.
  • K. Matthews, Solving the Diophantine equation $ax^{2}+bxy+cy^{2}+dx+ey+f=0$, preprint, 2015-2020.
  • K. Matthews, http://www.numbertheory.org/php/generalquadratic.html.
  • J. Ster, Rings in which nilpotents form a subring, Carpathian J. Math., 31(2) (2015), 157-163.
Toplam 5 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Grigore Calugareanu Bu kişi benim

Erken Görünüm Tarihi 11 Mayıs 2023
Yayımlanma Tarihi 10 Temmuz 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Calugareanu, G. (2023). Unipotent diagonalization of matrices. International Electronic Journal of Algebra, 34(34), 71-87. https://doi.org/10.24330/ieja.1281654
AMA Calugareanu G. Unipotent diagonalization of matrices. IEJA. Temmuz 2023;34(34):71-87. doi:10.24330/ieja.1281654
Chicago Calugareanu, Grigore. “Unipotent Diagonalization of Matrices”. International Electronic Journal of Algebra 34, sy. 34 (Temmuz 2023): 71-87. https://doi.org/10.24330/ieja.1281654.
EndNote Calugareanu G (01 Temmuz 2023) Unipotent diagonalization of matrices. International Electronic Journal of Algebra 34 34 71–87.
IEEE G. Calugareanu, “Unipotent diagonalization of matrices”, IEJA, c. 34, sy. 34, ss. 71–87, 2023, doi: 10.24330/ieja.1281654.
ISNAD Calugareanu, Grigore. “Unipotent Diagonalization of Matrices”. International Electronic Journal of Algebra 34/34 (Temmuz 2023), 71-87. https://doi.org/10.24330/ieja.1281654.
JAMA Calugareanu G. Unipotent diagonalization of matrices. IEJA. 2023;34:71–87.
MLA Calugareanu, Grigore. “Unipotent Diagonalization of Matrices”. International Electronic Journal of Algebra, c. 34, sy. 34, 2023, ss. 71-87, doi:10.24330/ieja.1281654.
Vancouver Calugareanu G. Unipotent diagonalization of matrices. IEJA. 2023;34(34):71-87.