Araştırma Makalesi
BibTex RIS Kaynak Göster

On NH-embedded and SS-quasinormal subgroups of finite groups

Yıl 2024, , 121 - 129, 09.01.2024
https://doi.org/10.24330/ieja.1299719

Öz

Let $G$ be a finite group. A subgroup $H$ is called $S$-semipermutable in $G$ if $HG_p$ = $G_pH$ for any $G_p\in Syl_p(G)$ with $(|H|, p) = 1$, where $p$ is a prime number divisible $|G|$. Furthermore, $H$ is said to be $NH$-embedded in $G$
if there exists a normal subgroup $T$ of $G$ such that $HT$ is a Hall subgroup of $G$ and
$H \cap T \leq H_{\overline{s}G}$, where $H_{\overline{s}G}$ is the largest $S$-semipermutable subgroup of $G$ contained in
$H$, and $H$ is said to be $SS$-quasinormal in $G$ provided there is a supplement $B$ of $H$ to $G$ such that $H$ permutes with every Sylow subgroup of $B$. In this paper, we obtain some criteria for $p$-nilpotency and Supersolvability of a finite
group and extend some known results concerning $NH$-embedded and $SS$-quasinormal subgroups.

Kaynakça

  • M. Asaad and A. Heliel, On S-quasinormally embedded subgroups of finite groups, J. Pure Appl. Algebra, 165(2) (2001), 129-135.
  • Z. Chen, On a theorem of Srinivasan, J. Southwest Normal Univ. Nat. Sci. (Chinese), 12(1) (1987), 1-4.
  • W. E. Deskins, On quasinormal subgroups of finite groups, Math. Z., 82 (1963), 125-132.
  • K. Doerk and T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin, 1992.
  • Y. Gao and X. Li, On NH-embedded subgroups of finite groups, J. Algebra Appl., 21(10) (2022), 2250200 (11 pp).
  • B. Huppert, Endliche Gruppen, Springer-Verlag, Berlin, 1967.
  • I. M. Isaacs, Semipermutable $\pi$-subgroups, Arch. Math. (Basel), 102(1) (2014), 1-6.
  • O. H. Kegel, Sylow-Gruppen und Subnormalteiler endlicher Gruppen, Math. Z., 78 (1962), 205-221.
  • S. Li, Z. Shen, J. Liu and X. Liu, The influence of SS-quasinormality of some subgroups on the structure of finite groups, J. Algebra, 319(10) (2008), 4275-4287.
  • Y. Li, S. Qiao, N. Su and Y. Wang, On weakly s-semipermutable subgroups of finite groups, J. Algebra, 371 (2012), 250-261.
  • P. Schmid, Subgroups permutable with all Sylow subgroups, J. Algebra, 207(1) (1998), 285-293.
  • Q. Zhang and L. Wang, The influence of s-semipermutable subgroups on the structure of finite groups, Acta Math. Sinica (Chinese Ser.), 48 (2005), 81-88.
Yıl 2024, , 121 - 129, 09.01.2024
https://doi.org/10.24330/ieja.1299719

Öz

Kaynakça

  • M. Asaad and A. Heliel, On S-quasinormally embedded subgroups of finite groups, J. Pure Appl. Algebra, 165(2) (2001), 129-135.
  • Z. Chen, On a theorem of Srinivasan, J. Southwest Normal Univ. Nat. Sci. (Chinese), 12(1) (1987), 1-4.
  • W. E. Deskins, On quasinormal subgroups of finite groups, Math. Z., 82 (1963), 125-132.
  • K. Doerk and T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin, 1992.
  • Y. Gao and X. Li, On NH-embedded subgroups of finite groups, J. Algebra Appl., 21(10) (2022), 2250200 (11 pp).
  • B. Huppert, Endliche Gruppen, Springer-Verlag, Berlin, 1967.
  • I. M. Isaacs, Semipermutable $\pi$-subgroups, Arch. Math. (Basel), 102(1) (2014), 1-6.
  • O. H. Kegel, Sylow-Gruppen und Subnormalteiler endlicher Gruppen, Math. Z., 78 (1962), 205-221.
  • S. Li, Z. Shen, J. Liu and X. Liu, The influence of SS-quasinormality of some subgroups on the structure of finite groups, J. Algebra, 319(10) (2008), 4275-4287.
  • Y. Li, S. Qiao, N. Su and Y. Wang, On weakly s-semipermutable subgroups of finite groups, J. Algebra, 371 (2012), 250-261.
  • P. Schmid, Subgroups permutable with all Sylow subgroups, J. Algebra, 207(1) (1998), 285-293.
  • Q. Zhang and L. Wang, The influence of s-semipermutable subgroups on the structure of finite groups, Acta Math. Sinica (Chinese Ser.), 48 (2005), 81-88.
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Weicheng Zheng Bu kişi benim

Liang Cuı Bu kişi benim

Wei Meng Bu kişi benim

Jiakuan Lu Bu kişi benim

Erken Görünüm Tarihi 24 Mayıs 2023
Yayımlanma Tarihi 9 Ocak 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Zheng, W., Cuı, L., Meng, W., Lu, J. (2024). On NH-embedded and SS-quasinormal subgroups of finite groups. International Electronic Journal of Algebra, 35(35), 121-129. https://doi.org/10.24330/ieja.1299719
AMA Zheng W, Cuı L, Meng W, Lu J. On NH-embedded and SS-quasinormal subgroups of finite groups. IEJA. Ocak 2024;35(35):121-129. doi:10.24330/ieja.1299719
Chicago Zheng, Weicheng, Liang Cuı, Wei Meng, ve Jiakuan Lu. “On NH-Embedded and SS-Quasinormal Subgroups of Finite Groups”. International Electronic Journal of Algebra 35, sy. 35 (Ocak 2024): 121-29. https://doi.org/10.24330/ieja.1299719.
EndNote Zheng W, Cuı L, Meng W, Lu J (01 Ocak 2024) On NH-embedded and SS-quasinormal subgroups of finite groups. International Electronic Journal of Algebra 35 35 121–129.
IEEE W. Zheng, L. Cuı, W. Meng, ve J. Lu, “On NH-embedded and SS-quasinormal subgroups of finite groups”, IEJA, c. 35, sy. 35, ss. 121–129, 2024, doi: 10.24330/ieja.1299719.
ISNAD Zheng, Weicheng vd. “On NH-Embedded and SS-Quasinormal Subgroups of Finite Groups”. International Electronic Journal of Algebra 35/35 (Ocak 2024), 121-129. https://doi.org/10.24330/ieja.1299719.
JAMA Zheng W, Cuı L, Meng W, Lu J. On NH-embedded and SS-quasinormal subgroups of finite groups. IEJA. 2024;35:121–129.
MLA Zheng, Weicheng vd. “On NH-Embedded and SS-Quasinormal Subgroups of Finite Groups”. International Electronic Journal of Algebra, c. 35, sy. 35, 2024, ss. 121-9, doi:10.24330/ieja.1299719.
Vancouver Zheng W, Cuı L, Meng W, Lu J. On NH-embedded and SS-quasinormal subgroups of finite groups. IEJA. 2024;35(35):121-9.