Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, , 82 - 89, 09.01.2024
https://doi.org/10.24330/ieja.1299720

Öz

Kaynakça

  • D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra, 1(1) (2009), 3-56.
  • C. Bakkari, Rings in which every homomorphic image is a Noetherian domain, Gulf J. Math., 2 (2014), 1-6.
  • C. Bakkari, S. Kabbaj and N. Mahdou, Trivial extensions defined by Prüfer conditions, J. Pure Appl. Algebra, 214(1) (2010), 53-60.
  • C. Bakkari and N. Mahdou, On weakly coherent rings, Rocky Mountain J. Math., 44(3) (2014), 743-752.
  • R. Dastanpour and A. Ghorbani, Rings with divisibility on chains of ideals, Comm. Algebra, 45(7) (2017), 2889-2898.
  • S. Glaz, Commutative Coherent Rings, Lecture Notes in Mathematics, 1371, Springer-Verlag, Berlin, 1989.
  • J. A. Huckaba, Commutative Rings with Zero Divisors, Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, Inc., New York, 1988.
  • S. Kabbaj and N. Mahdou, Trivial extensions defined by coherent-like conditions, Comm. Algebra, 32(10) (2004), 3937-3953.
  • B. L. Osofsky, A generalization of quasi-Frobenius rings, J. Algebra, 4 (1966), 373-387.

Rings with divisibility on ascending chains of ideals

Yıl 2024, , 82 - 89, 09.01.2024
https://doi.org/10.24330/ieja.1299720

Öz

According to Dastanpour and Ghorbani, a ring $R$ is said to satisfy divisibility on ascending chains of right ideals ($A C C_{d}$) if, for every ascending chain of right ideals $I_{1} \subseteq I_{2} \subseteq I_{3} \subseteq I_{4} \subseteq \ldots $ of $R$, there exists an integer $k \in \mathbb{N}$ such that for each $i \geq k$, there exists an element $a_{i} \in R$ such that $I_{i} =a_{i} I_{i +1}$. In this paper, we examine the transfer of the $A C C_{d}$-condition on ideals to trivial ring extensions. Moreover, we investigate the connection between the $A C C_{d}$ on ideals and other ascending chain conditions. For example we will prove that if $R$ is a ring with $A C C_{d}$ on ideals,\ then $R$ has $A C C$ on prime ideals.

Kaynakça

  • D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra, 1(1) (2009), 3-56.
  • C. Bakkari, Rings in which every homomorphic image is a Noetherian domain, Gulf J. Math., 2 (2014), 1-6.
  • C. Bakkari, S. Kabbaj and N. Mahdou, Trivial extensions defined by Prüfer conditions, J. Pure Appl. Algebra, 214(1) (2010), 53-60.
  • C. Bakkari and N. Mahdou, On weakly coherent rings, Rocky Mountain J. Math., 44(3) (2014), 743-752.
  • R. Dastanpour and A. Ghorbani, Rings with divisibility on chains of ideals, Comm. Algebra, 45(7) (2017), 2889-2898.
  • S. Glaz, Commutative Coherent Rings, Lecture Notes in Mathematics, 1371, Springer-Verlag, Berlin, 1989.
  • J. A. Huckaba, Commutative Rings with Zero Divisors, Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, Inc., New York, 1988.
  • S. Kabbaj and N. Mahdou, Trivial extensions defined by coherent-like conditions, Comm. Algebra, 32(10) (2004), 3937-3953.
  • B. L. Osofsky, A generalization of quasi-Frobenius rings, J. Algebra, 4 (1966), 373-387.
Toplam 9 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Oussama Aymane Es Safı Bu kişi benim

Najib Mahdou Bu kişi benim

Mohamed Yousıf Bu kişi benim

Erken Görünüm Tarihi 24 Mayıs 2023
Yayımlanma Tarihi 9 Ocak 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Safı, O. A. . E., Mahdou, N., & Yousıf, M. (2024). Rings with divisibility on ascending chains of ideals. International Electronic Journal of Algebra, 35(35), 82-89. https://doi.org/10.24330/ieja.1299720
AMA Safı OAE, Mahdou N, Yousıf M. Rings with divisibility on ascending chains of ideals. IEJA. Ocak 2024;35(35):82-89. doi:10.24330/ieja.1299720
Chicago Safı, Oussama Aymane Es, Najib Mahdou, ve Mohamed Yousıf. “Rings With Divisibility on Ascending Chains of Ideals”. International Electronic Journal of Algebra 35, sy. 35 (Ocak 2024): 82-89. https://doi.org/10.24330/ieja.1299720.
EndNote Safı OAE, Mahdou N, Yousıf M (01 Ocak 2024) Rings with divisibility on ascending chains of ideals. International Electronic Journal of Algebra 35 35 82–89.
IEEE O. A. . E. Safı, N. Mahdou, ve M. Yousıf, “Rings with divisibility on ascending chains of ideals”, IEJA, c. 35, sy. 35, ss. 82–89, 2024, doi: 10.24330/ieja.1299720.
ISNAD Safı, Oussama Aymane Es vd. “Rings With Divisibility on Ascending Chains of Ideals”. International Electronic Journal of Algebra 35/35 (Ocak 2024), 82-89. https://doi.org/10.24330/ieja.1299720.
JAMA Safı OAE, Mahdou N, Yousıf M. Rings with divisibility on ascending chains of ideals. IEJA. 2024;35:82–89.
MLA Safı, Oussama Aymane Es vd. “Rings With Divisibility on Ascending Chains of Ideals”. International Electronic Journal of Algebra, c. 35, sy. 35, 2024, ss. 82-89, doi:10.24330/ieja.1299720.
Vancouver Safı OAE, Mahdou N, Yousıf M. Rings with divisibility on ascending chains of ideals. IEJA. 2024;35(35):82-9.