Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, , 95 - 107, 09.01.2024
https://doi.org/10.24330/ieja.1377714

Öz

Kaynakça

  • M. F. Atiyah, K - Theory, W. A. Benjamin, Inc., New York- Amsterdam, 1967.
  • C. Chevalley, A new kind of relationship between matrices, Amer. J. Math., 65 (1943), 521-531.
  • C. Chevalley, Algebraic Lie algebras, Ann. of Math. (2), 48 (1947), 91-100.
  • C. Chevalley, Theorie des Groupes de Lie, Tome II, Groupes Algebriques, No. 1152. Hermann & Cie, Paris, 1951.
  • M. Goto, On algebraic Lie algebras, J. Math. Soc. Japan, 1 (1948), 29-45.
  • G. Hochschild, Semi-simple algebras and generalized derivations, Amer. J. Math., 64 (1942), 677-694.
  • B. S. Kiranagi, R. Kumar, K. Ajaykumar and B. Madhu, On derivation algebra bundle of an algebra bundle, Proc. Jangjeon Math. Soc., 21(2) (2018), 293-300.
  • Y. Matsushima, Note on the replicas of matrices, Proc. Japan Acad., 23(5) (1947), 42-49.
  • S.Tôgô, On the derivation algebras of Lie algebras, Canadian J. Math., 13 (1961), 201-216.
  • S. Tôgô, On splittable linear Lie algebras, J. Sci. Hiroshima Univ. Ser. A, 18 (1955), 289-306.
  • S. Tôgô, Derivations of Lie algebras, J. Sci. Hiroshima Univ. Ser. A-I Math., 28 (1964), 133-158.

Algebraic Lie Algebra Bundles and Derivations of Lie Algebra Bundles

Yıl 2024, , 95 - 107, 09.01.2024
https://doi.org/10.24330/ieja.1377714

Öz

In this paper, we define algebraic Lie algebra bundles, discuss some results on algebraic Lie algebra bundles and derivations of Lie algebra bundles. Some results involving inner derivations and central derivations of Lie algebra bundles are obtained.

Kaynakça

  • M. F. Atiyah, K - Theory, W. A. Benjamin, Inc., New York- Amsterdam, 1967.
  • C. Chevalley, A new kind of relationship between matrices, Amer. J. Math., 65 (1943), 521-531.
  • C. Chevalley, Algebraic Lie algebras, Ann. of Math. (2), 48 (1947), 91-100.
  • C. Chevalley, Theorie des Groupes de Lie, Tome II, Groupes Algebriques, No. 1152. Hermann & Cie, Paris, 1951.
  • M. Goto, On algebraic Lie algebras, J. Math. Soc. Japan, 1 (1948), 29-45.
  • G. Hochschild, Semi-simple algebras and generalized derivations, Amer. J. Math., 64 (1942), 677-694.
  • B. S. Kiranagi, R. Kumar, K. Ajaykumar and B. Madhu, On derivation algebra bundle of an algebra bundle, Proc. Jangjeon Math. Soc., 21(2) (2018), 293-300.
  • Y. Matsushima, Note on the replicas of matrices, Proc. Japan Acad., 23(5) (1947), 42-49.
  • S.Tôgô, On the derivation algebras of Lie algebras, Canadian J. Math., 13 (1961), 201-216.
  • S. Tôgô, On splittable linear Lie algebras, J. Sci. Hiroshima Univ. Ser. A, 18 (1955), 289-306.
  • S. Tôgô, Derivations of Lie algebras, J. Sci. Hiroshima Univ. Ser. A-I Math., 28 (1964), 133-158.
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebir ve Sayı Teorisi, Kategori Teorisi, K Teorisi, Homolojik Cebir
Bölüm Makaleler
Yazarlar

M. V. Monica Bu kişi benim

R Rajendra

Erken Görünüm Tarihi 18 Ekim 2023
Yayımlanma Tarihi 9 Ocak 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Monica, M. V., & Rajendra, R. (2024). Algebraic Lie Algebra Bundles and Derivations of Lie Algebra Bundles. International Electronic Journal of Algebra, 35(35), 95-107. https://doi.org/10.24330/ieja.1377714
AMA Monica MV, Rajendra R. Algebraic Lie Algebra Bundles and Derivations of Lie Algebra Bundles. IEJA. Ocak 2024;35(35):95-107. doi:10.24330/ieja.1377714
Chicago Monica, M. V., ve R Rajendra. “Algebraic Lie Algebra Bundles and Derivations of Lie Algebra Bundles”. International Electronic Journal of Algebra 35, sy. 35 (Ocak 2024): 95-107. https://doi.org/10.24330/ieja.1377714.
EndNote Monica MV, Rajendra R (01 Ocak 2024) Algebraic Lie Algebra Bundles and Derivations of Lie Algebra Bundles. International Electronic Journal of Algebra 35 35 95–107.
IEEE M. V. Monica ve R. Rajendra, “Algebraic Lie Algebra Bundles and Derivations of Lie Algebra Bundles”, IEJA, c. 35, sy. 35, ss. 95–107, 2024, doi: 10.24330/ieja.1377714.
ISNAD Monica, M. V. - Rajendra, R. “Algebraic Lie Algebra Bundles and Derivations of Lie Algebra Bundles”. International Electronic Journal of Algebra 35/35 (Ocak 2024), 95-107. https://doi.org/10.24330/ieja.1377714.
JAMA Monica MV, Rajendra R. Algebraic Lie Algebra Bundles and Derivations of Lie Algebra Bundles. IEJA. 2024;35:95–107.
MLA Monica, M. V. ve R Rajendra. “Algebraic Lie Algebra Bundles and Derivations of Lie Algebra Bundles”. International Electronic Journal of Algebra, c. 35, sy. 35, 2024, ss. 95-107, doi:10.24330/ieja.1377714.
Vancouver Monica MV, Rajendra R. Algebraic Lie Algebra Bundles and Derivations of Lie Algebra Bundles. IEJA. 2024;35(35):95-107.