Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, , 20 - 31, 09.01.2024
https://doi.org/10.24330/ieja.1388822

Öz

Kaynakça

  • A. Azizi, F. Elmouhib and M. Talbi, 5-rank of ambiguous class groups of quintic Kummer extensions, Proc. Indian Acad. Sci. Math. Sci., 132(12) (2022), 14 pp.
  • F. Elmouhib, M. Talbi and A. Azizi, On the capitulation problem of some pure metacyclic fields of degree 20., Palest. J. Math., 11(1) (2022), 260-267.
  • E. Hecke, Lectures on the Theory of Algebraic Numbers, Graduate Texts in Mathematics, 77, Springer-Verlag, New York-Berlin, 1981.\label{Hec}
  • M. Kulkarni, D. Majumdar and B. Sury, $l$-class groups of cyclic extension of prime degree $l$, J. Ramanujan Math. Soc., 30(4) (2015), 413-454.\label{Mani}
  • L. C. Washington, Introduction to Cyclotomic Fields, Graduate Texts in Mathematics, 83, Springer-Verlag, New-York, 1982.\label{washint}
  • The PARI Group, PARI/GP, Version 2.4.9, Bordeaux, 2017, http://pari.math.u-bordeaux.fr\label{PARI}

On the capitulation problem of some pure metacyclic fields of degree 20 II

Yıl 2024, , 20 - 31, 09.01.2024
https://doi.org/10.24330/ieja.1388822

Öz

Let $n$ be a $5^{th}$ power-free natural number and $k_0\,=\,\mathbb{Q}(\zeta_5)$ be the cyclotomic field generated by a primitive $5^{th}$ root of unity $\zeta_5$. Then $k\,=\,\mathbb{Q}(\sqrt[5]{n},\zeta_5)$ is a pure metacyclic field of absolute degree $20$. In the case that $k$ possesses a $5$-class group $C_{k,5}$ of type $(5,5)$ and all the classes are ambiguous under the action of $Gal(k/k_0)$, the capitulation of $5$-ideal classes of $k$ in its unramified cyclic quintic extensions is determined.

Kaynakça

  • A. Azizi, F. Elmouhib and M. Talbi, 5-rank of ambiguous class groups of quintic Kummer extensions, Proc. Indian Acad. Sci. Math. Sci., 132(12) (2022), 14 pp.
  • F. Elmouhib, M. Talbi and A. Azizi, On the capitulation problem of some pure metacyclic fields of degree 20., Palest. J. Math., 11(1) (2022), 260-267.
  • E. Hecke, Lectures on the Theory of Algebraic Numbers, Graduate Texts in Mathematics, 77, Springer-Verlag, New York-Berlin, 1981.\label{Hec}
  • M. Kulkarni, D. Majumdar and B. Sury, $l$-class groups of cyclic extension of prime degree $l$, J. Ramanujan Math. Soc., 30(4) (2015), 413-454.\label{Mani}
  • L. C. Washington, Introduction to Cyclotomic Fields, Graduate Texts in Mathematics, 83, Springer-Verlag, New-York, 1982.\label{washint}
  • The PARI Group, PARI/GP, Version 2.4.9, Bordeaux, 2017, http://pari.math.u-bordeaux.fr\label{PARI}
Toplam 6 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebir ve Sayı Teorisi, Grup Teorisi ve Genellemeler, Kategori Teorisi, K Teorisi, Homolojik Cebir
Bölüm Makaleler
Yazarlar

Fouad Elmouhib Bu kişi benim

Mohamed Talbi Bu kişi benim

Abdelmalek Azizi Bu kişi benim

Erken Görünüm Tarihi 10 Kasım 2023
Yayımlanma Tarihi 9 Ocak 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Elmouhib, F., Talbi, M., & Azizi, A. (2024). On the capitulation problem of some pure metacyclic fields of degree 20 II. International Electronic Journal of Algebra, 35(35), 20-31. https://doi.org/10.24330/ieja.1388822
AMA Elmouhib F, Talbi M, Azizi A. On the capitulation problem of some pure metacyclic fields of degree 20 II. IEJA. Ocak 2024;35(35):20-31. doi:10.24330/ieja.1388822
Chicago Elmouhib, Fouad, Mohamed Talbi, ve Abdelmalek Azizi. “On the Capitulation Problem of Some Pure Metacyclic Fields of Degree 20 II”. International Electronic Journal of Algebra 35, sy. 35 (Ocak 2024): 20-31. https://doi.org/10.24330/ieja.1388822.
EndNote Elmouhib F, Talbi M, Azizi A (01 Ocak 2024) On the capitulation problem of some pure metacyclic fields of degree 20 II. International Electronic Journal of Algebra 35 35 20–31.
IEEE F. Elmouhib, M. Talbi, ve A. Azizi, “On the capitulation problem of some pure metacyclic fields of degree 20 II”, IEJA, c. 35, sy. 35, ss. 20–31, 2024, doi: 10.24330/ieja.1388822.
ISNAD Elmouhib, Fouad vd. “On the Capitulation Problem of Some Pure Metacyclic Fields of Degree 20 II”. International Electronic Journal of Algebra 35/35 (Ocak 2024), 20-31. https://doi.org/10.24330/ieja.1388822.
JAMA Elmouhib F, Talbi M, Azizi A. On the capitulation problem of some pure metacyclic fields of degree 20 II. IEJA. 2024;35:20–31.
MLA Elmouhib, Fouad vd. “On the Capitulation Problem of Some Pure Metacyclic Fields of Degree 20 II”. International Electronic Journal of Algebra, c. 35, sy. 35, 2024, ss. 20-31, doi:10.24330/ieja.1388822.
Vancouver Elmouhib F, Talbi M, Azizi A. On the capitulation problem of some pure metacyclic fields of degree 20 II. IEJA. 2024;35(35):20-31.