Research Article
BibTex RIS Cite

$S$-$M$-cyclic submodules and some applications

Year 2025, Volume: 37 Issue: 37, 44 - 58, 14.01.2025
https://doi.org/10.24330/ieja.1480269

Abstract

In this paper, we introduce the notion of $S$-$M$-cyclic submodules, which is a generalization of the notion of $M$-cyclic submodules. Let $M, N$ be right $R$-modules and $S$ be a multiplicatively closed subset of a ring $R$. A submodule $A$ of $N$ is said to be an $S$-$M$-cyclic submodule, if there exist $s\in S$ and $f \in Hom_R(M,N)$ such that $As \subseteq f(M) \subseteq A$. Besides giving many properties of $S$-$M$-cyclic submodules, we generalize some results on $M$-cyclic submodules to $S$-$M$-cyclic submodules. Furthermore, we generalize some properties of principally injective modules and pseudo-principally injective modules to $S$-principally injective modules and $S$-pseudo-principally injective modules, respectively. We study the transfer of this notion to various contexts of these modules.

References

  • D. D. Anderson, T. Arabaci, U. Tekir and S. Koc, On S-multiplication modules, Comm. Algebra, 48(8) (2020), 3398-3407.
  • A. Barnard, Multiplication modules, J. Algebra, 71(1) (1981), 174-178.
  • S. Baupradist and S. Asawasamrit, On fully-M-cyclic modules, J. Math. Res., 3(2) (2011), 23-26.
  • S. Baupradist and S. Asawasamrit, GW-principally injective modules and pseudo-GW-principally injective modules, Southeast Asian Bull. Math., 42 (2018), 521-529.
  • S. Baupradist, H. D. Hai and N. V. Sanh, On pseudo-p-injectivity, Southeast Asian Bull. Math., 35(1) (2011), 21-27.
  • S. Baupradist, H. D. Hai and N. V. Sanh, A general form of pseudo-p-injectivity, Southeast Asian Bull. Math., 35 (2011), 927-933.
  • A. Haghany and M. R. Vedadi, Modules whose injective endomorphisms are essential, J. Algebra, 243(2) (2001), 765-779.
  • V. Kumar, A. J. Gupta, B. M. Pandeya and M. K. Patel, M-sp-injective modules, Asian-Eur. J. Math., 5(1) (2012), 1250005 (11 pp).
  • S. H. Mohamed and B. J. Muller, Continuous and Discrete Modules, London Math. Soc. Lecture Note Series, 147, Cambridge Univ. Press, Cambridge, 1990.
  • W. K. Nicholson and M. F. Yousif, Principally injective rings, J. Algebra, 174 (1995), 77-93.
  • M. K. Patel and S. Chase, FI-semi-injective modules, Palest. J. Math., 11(1) (2022), 182-190.
  • M. K. Patel, B. M. Pandeya, A. J. Gupta and V. Kumar, Quasi principally injective modules, Int. J. Algebra, 4 (2010), 1255-1259.
  • T. C. Quynh and N. V. Sanh, On quasi pseudo-GP-injective rings and modules, Bull. Malays. Math. Sci. Soc., 37(2) (2014), 321-332.
  • N. V. Sanh and K. P. Shum, Endomorphism rings of quasi principally injective modules, Comm. Algebra, 29(4) (2001), 1437-1443.
  • N. V. Sanh, K. P. Shum, S. Dhompongsa and S.Wongwai, On quasi-principally injective modules, Algebra Colloq., 6(3) (1999), 269-276.
  • W. M. Xue, On Morita duality, Bull. Austral. Math. Soc., 49(1) (1994), 35-45.
  • Z. Zhu, Pseudo QP-injective modules and generalized pseudo QP-injective modules, Int. Electron. J. Algebra, 14 (2013), 32-43.

Year 2025, Volume: 37 Issue: 37, 44 - 58, 14.01.2025
https://doi.org/10.24330/ieja.1480269

Abstract

References

  • D. D. Anderson, T. Arabaci, U. Tekir and S. Koc, On S-multiplication modules, Comm. Algebra, 48(8) (2020), 3398-3407.
  • A. Barnard, Multiplication modules, J. Algebra, 71(1) (1981), 174-178.
  • S. Baupradist and S. Asawasamrit, On fully-M-cyclic modules, J. Math. Res., 3(2) (2011), 23-26.
  • S. Baupradist and S. Asawasamrit, GW-principally injective modules and pseudo-GW-principally injective modules, Southeast Asian Bull. Math., 42 (2018), 521-529.
  • S. Baupradist, H. D. Hai and N. V. Sanh, On pseudo-p-injectivity, Southeast Asian Bull. Math., 35(1) (2011), 21-27.
  • S. Baupradist, H. D. Hai and N. V. Sanh, A general form of pseudo-p-injectivity, Southeast Asian Bull. Math., 35 (2011), 927-933.
  • A. Haghany and M. R. Vedadi, Modules whose injective endomorphisms are essential, J. Algebra, 243(2) (2001), 765-779.
  • V. Kumar, A. J. Gupta, B. M. Pandeya and M. K. Patel, M-sp-injective modules, Asian-Eur. J. Math., 5(1) (2012), 1250005 (11 pp).
  • S. H. Mohamed and B. J. Muller, Continuous and Discrete Modules, London Math. Soc. Lecture Note Series, 147, Cambridge Univ. Press, Cambridge, 1990.
  • W. K. Nicholson and M. F. Yousif, Principally injective rings, J. Algebra, 174 (1995), 77-93.
  • M. K. Patel and S. Chase, FI-semi-injective modules, Palest. J. Math., 11(1) (2022), 182-190.
  • M. K. Patel, B. M. Pandeya, A. J. Gupta and V. Kumar, Quasi principally injective modules, Int. J. Algebra, 4 (2010), 1255-1259.
  • T. C. Quynh and N. V. Sanh, On quasi pseudo-GP-injective rings and modules, Bull. Malays. Math. Sci. Soc., 37(2) (2014), 321-332.
  • N. V. Sanh and K. P. Shum, Endomorphism rings of quasi principally injective modules, Comm. Algebra, 29(4) (2001), 1437-1443.
  • N. V. Sanh, K. P. Shum, S. Dhompongsa and S.Wongwai, On quasi-principally injective modules, Algebra Colloq., 6(3) (1999), 269-276.
  • W. M. Xue, On Morita duality, Bull. Austral. Math. Soc., 49(1) (1994), 35-45.
  • Z. Zhu, Pseudo QP-injective modules and generalized pseudo QP-injective modules, Int. Electron. J. Algebra, 14 (2013), 32-43.
There are 17 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Research Article
Authors

Samruam Baupradist

Submission Date January 9, 2024
Acceptance Date April 2, 2024
Early Pub Date May 7, 2024
Publication Date January 14, 2025
Published in Issue Year 2025 Volume: 37 Issue: 37

Cite

APA Baupradist, S. (2025). $S$-$M$-cyclic submodules and some applications. International Electronic Journal of Algebra, 37(37), 44-58. https://doi.org/10.24330/ieja.1480269
AMA 1.Baupradist S. $S$-$M$-cyclic submodules and some applications. IEJA. 2025;37(37):44-58. doi:10.24330/ieja.1480269
Chicago Baupradist, Samruam. 2025. “$S$-$M$-Cyclic Submodules and Some Applications”. International Electronic Journal of Algebra 37 (37): 44-58. https://doi.org/10.24330/ieja.1480269.
EndNote Baupradist S (January 1, 2025) $S$-$M$-cyclic submodules and some applications. International Electronic Journal of Algebra 37 37 44–58.
IEEE [1]S. Baupradist, “$S$-$M$-cyclic submodules and some applications”, IEJA, vol. 37, no. 37, pp. 44–58, Jan. 2025, doi: 10.24330/ieja.1480269.
ISNAD Baupradist, Samruam. “$S$-$M$-Cyclic Submodules and Some Applications”. International Electronic Journal of Algebra 37/37 (January 1, 2025): 44-58. https://doi.org/10.24330/ieja.1480269.
JAMA 1.Baupradist S. $S$-$M$-cyclic submodules and some applications. IEJA. 2025;37:44–58.
MLA Baupradist, Samruam. “$S$-$M$-Cyclic Submodules and Some Applications”. International Electronic Journal of Algebra, vol. 37, no. 37, Jan. 2025, pp. 44-58, doi:10.24330/ieja.1480269.
Vancouver 1.Baupradist S. $S$-$M$-cyclic submodules and some applications. IEJA [Internet]. 2025 Jan. 1;37(37):44-58. Available from: https://izlik.org/JA69AS83WZ