BibTex RIS Kaynak Göster

DECOMPOSITION OF TENSOR PRODUCTS OF MODULAR IRREDUCIBLE REPRESENTATIONS FOR SL3: THE p ≥ 5 CASE

Yıl 2015, , 105 - 138, 01.06.2015
https://doi.org/10.24330/ieja.266215

Öz

We study the structure of the indecomposable direct summands of tensor products
of two restricted rational simple modules for the algebraic group SL3(K), where K is an
algebraically closed field of characteristic p ≥ 5. We also give a characteristic-free algorithm
for the decomposition of such a tensor product into indecomposable direct summands. The
p < 5 case was studied in the authors’ earlier paper [4]. We find that for characteristics p ≥ 5
all the indecomposable summands are rigid, in contrast to the characteristic 3 case.

Yıl 2015, , 105 - 138, 01.06.2015
https://doi.org/10.24330/ieja.266215

Öz

Toplam 0 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA83CK95UH
Bölüm Makaleler
Yazarlar

C. Bowman Bu kişi benim

S. R. Doty Bu kişi benim

S. Martin Bu kişi benim

Yayımlanma Tarihi 1 Haziran 2015
Yayımlandığı Sayı Yıl 2015

Kaynak Göster

APA Bowman, C., Doty, S. R., & Martin, S. (2015). DECOMPOSITION OF TENSOR PRODUCTS OF MODULAR IRREDUCIBLE REPRESENTATIONS FOR SL3: THE p ≥ 5 CASE. International Electronic Journal of Algebra, 17(17), 105-138. https://doi.org/10.24330/ieja.266215
AMA Bowman C, Doty SR, Martin S. DECOMPOSITION OF TENSOR PRODUCTS OF MODULAR IRREDUCIBLE REPRESENTATIONS FOR SL3: THE p ≥ 5 CASE. IEJA. Haziran 2015;17(17):105-138. doi:10.24330/ieja.266215
Chicago Bowman, C., S. R. Doty, ve S. Martin. “DECOMPOSITION OF TENSOR PRODUCTS OF MODULAR IRREDUCIBLE REPRESENTATIONS FOR SL3: THE P ≥ 5 CASE”. International Electronic Journal of Algebra 17, sy. 17 (Haziran 2015): 105-38. https://doi.org/10.24330/ieja.266215.
EndNote Bowman C, Doty SR, Martin S (01 Haziran 2015) DECOMPOSITION OF TENSOR PRODUCTS OF MODULAR IRREDUCIBLE REPRESENTATIONS FOR SL3: THE p ≥ 5 CASE. International Electronic Journal of Algebra 17 17 105–138.
IEEE C. Bowman, S. R. Doty, ve S. Martin, “DECOMPOSITION OF TENSOR PRODUCTS OF MODULAR IRREDUCIBLE REPRESENTATIONS FOR SL3: THE p ≥ 5 CASE”, IEJA, c. 17, sy. 17, ss. 105–138, 2015, doi: 10.24330/ieja.266215.
ISNAD Bowman, C. vd. “DECOMPOSITION OF TENSOR PRODUCTS OF MODULAR IRREDUCIBLE REPRESENTATIONS FOR SL3: THE P ≥ 5 CASE”. International Electronic Journal of Algebra 17/17 (Haziran 2015), 105-138. https://doi.org/10.24330/ieja.266215.
JAMA Bowman C, Doty SR, Martin S. DECOMPOSITION OF TENSOR PRODUCTS OF MODULAR IRREDUCIBLE REPRESENTATIONS FOR SL3: THE p ≥ 5 CASE. IEJA. 2015;17:105–138.
MLA Bowman, C. vd. “DECOMPOSITION OF TENSOR PRODUCTS OF MODULAR IRREDUCIBLE REPRESENTATIONS FOR SL3: THE P ≥ 5 CASE”. International Electronic Journal of Algebra, c. 17, sy. 17, 2015, ss. 105-38, doi:10.24330/ieja.266215.
Vancouver Bowman C, Doty SR, Martin S. DECOMPOSITION OF TENSOR PRODUCTS OF MODULAR IRREDUCIBLE REPRESENTATIONS FOR SL3: THE p ≥ 5 CASE. IEJA. 2015;17(17):105-38.