J. Beck, Distributive laws, in Seminar on Triples and Categorical Homology
Theory, B. Eckmann (ed.), Springer, Berlin, 80 (1969), 119-140.
G. Bohm, T. Brzezinski and R. Wisbauer, Monads and comonads on module
categories, J. Algebra, 322(5) (2009), 1719-1747.
T. Brzezinski and R. Wisbauer, Corings and Comodules, London Mathematical
Society Lecture Note Series, 309, Cambridge University Press, Cambridge,
2003.
J. Clark and R. Wisbauer, Idempotent monads and ?-functors, J. Pure Appl.
Algebra, 215(2) (2011), 145-153.
S. Eilenberg and S. Mac Lane, General theory of natural equivalences, Trans.
Amer. Math. Soc., 58(2) (1945), 231-294.
S. Eilenberg and J. C. Moore, Adjoint functors and triples, Illinois. J. Math.,
9 (1965), 381-398.
F. Frobenius, Theorie der hypercomplexen Groben, Sitz. Kon. Preuss. Akad.
Wiss., (1903), 504-537; Gesammelte Abhandlungen, art. 70, 284-317.
H. Hopf, Uber die Topologie der Gruppen-Mannigfaltigkeiten und ihre
Verallgemeinerungen, Ann. of Math., 42(2) (1941), 22-52.
S. O. Ivanov, Nakayama functors and Eilenberg-Watts theorems, J. Math. Sci.,
183(5) (2012), 675-680.
D. M. Kan, Adjoint functors, Trans. Amer. Math. Soc., 87 (1958), 294-329.
H. Kleisli, Every standard construction is induced by a pair of adjoint functors,
Proc. Amer. Math. Soc., 16 (1965), 544-546.
S. Mac Lane, Categories for the Working Mathematician, 2nd edn, Graduate
Texts in Mathematics, 5, Springer-Verlag, New York, 1998.
R. Marczinzik, A bocs theoretic characterization of gendo-symmetric algebras,
J. Algebra, 470 (2017), 160-171.
B. Mesablishvili, Entwining structures in monoidal categories, J. Algebra,
319(6) (2008), 2496-2517.
B. Mesablishvili and R. Wisbauer, Galois functors and entwining structures,
J. Algebra, 324(3) (2010), 464-506.
B. Mesablishvili and R. Wisbauer, Bimonads and Hopf monads on categories,
J. K-Theory, 7(2) (2011), 349-388.
B. Mesablishvili and R. Wisbauer, Notes on bimonads and Hopf monads, Theory
Appl. Categ., 26(10) (2012), 281-303.
B. Mesablishvili and R. Wisbauer, QF functors and (co)monads, J. Algebra,
376 (2013), 101-122.
B. Mesablishvili and R. Wisbauer, The fundamental theorem for weak braided
bimonads, J. Algebra, 490 (2017), 55-103.
J. W. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. of
Math., 81(2) (1965), 211-264.
K. Morita, Duality for modules and its applications to the theory of rings with
minimum condition, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A, 6 (1958), 83-142.
A. V. Roiter, Matrix problems and representations of BOCSs, Representation
Theory I, Lecture Notes in Math., 831, Springer, Berlin-New York, (1980),
288-324.
M. Sato, Fuller's theorem on equivalences, J. Algebra, 52(1) (1978), 274-284.
M. Sato, On equivalences between module subcategories, J. Algebra, 59(2)
(1979), 412-420.
R. Street, Frobenius monads and pseudomonoids, J. Math. Phys., 45(10)
(2004), 3930-3948.
D. Turi and G. Plotkin, Towards a mathematical operational semantics, Proceedings
12th Ann. IEEE Symp. on Logic in Computer Science, LICS'97, Warsaw,
Poland, (1997).
R. Wisbauer, Foundations of Module and Ring Theory, Algebra, Logic and
Applications, 3, Gordon and Breach Science Publishers, Philadelphia, PA,
1991.
R. Wisbauer, Tilting in module categories, Abelian groups, module theory, and
topology (Padua, 1997), Lecture Notes in Pure and Appl. Math., 201, Dekker,
New York, (1998), 421-444.
R. Wisbauer, Static modules and equivalences, Interactions between ring theory
and representations of algebras (Murcia), Lecture Notes in Pure and Appl.
Math., 210, Dekker, New York, (2000), 423-449.
R. Wisbauer, Algebra versus coalgebras, Appl. Categ. Structures, 16 (2008),
255-295.
R. Wisbauer, Comodules and contramodules, Glasg. Math. J., 52(A) (2010),
151-162.
R. Wisbauer, Regular pairings of functors and weak (co)monads, Algebra Discrete
Math., 15(1) (2013), 127-154.
R. Wisbauer, Weak Frobenius monads and Frobenius bimodules, Algebra Discrete
Math., 21(2) (2016), 287-308.
R. Wisbauer, Separability in algebra and category theory, Proc. Aligarh, (2016).
J. Worthington, A bialgebraic approach to automata and formal language theory,
Ann. Pure Appl. Logic, 163(7) (2012), 745-762.
J. Beck, Distributive laws, in Seminar on Triples and Categorical Homology
Theory, B. Eckmann (ed.), Springer, Berlin, 80 (1969), 119-140.
G. Bohm, T. Brzezinski and R. Wisbauer, Monads and comonads on module
categories, J. Algebra, 322(5) (2009), 1719-1747.
T. Brzezinski and R. Wisbauer, Corings and Comodules, London Mathematical
Society Lecture Note Series, 309, Cambridge University Press, Cambridge,
2003.
J. Clark and R. Wisbauer, Idempotent monads and ?-functors, J. Pure Appl.
Algebra, 215(2) (2011), 145-153.
S. Eilenberg and S. Mac Lane, General theory of natural equivalences, Trans.
Amer. Math. Soc., 58(2) (1945), 231-294.
S. Eilenberg and J. C. Moore, Adjoint functors and triples, Illinois. J. Math.,
9 (1965), 381-398.
F. Frobenius, Theorie der hypercomplexen Groben, Sitz. Kon. Preuss. Akad.
Wiss., (1903), 504-537; Gesammelte Abhandlungen, art. 70, 284-317.
H. Hopf, Uber die Topologie der Gruppen-Mannigfaltigkeiten und ihre
Verallgemeinerungen, Ann. of Math., 42(2) (1941), 22-52.
S. O. Ivanov, Nakayama functors and Eilenberg-Watts theorems, J. Math. Sci.,
183(5) (2012), 675-680.
D. M. Kan, Adjoint functors, Trans. Amer. Math. Soc., 87 (1958), 294-329.
H. Kleisli, Every standard construction is induced by a pair of adjoint functors,
Proc. Amer. Math. Soc., 16 (1965), 544-546.
S. Mac Lane, Categories for the Working Mathematician, 2nd edn, Graduate
Texts in Mathematics, 5, Springer-Verlag, New York, 1998.
R. Marczinzik, A bocs theoretic characterization of gendo-symmetric algebras,
J. Algebra, 470 (2017), 160-171.
B. Mesablishvili, Entwining structures in monoidal categories, J. Algebra,
319(6) (2008), 2496-2517.
B. Mesablishvili and R. Wisbauer, Galois functors and entwining structures,
J. Algebra, 324(3) (2010), 464-506.
B. Mesablishvili and R. Wisbauer, Bimonads and Hopf monads on categories,
J. K-Theory, 7(2) (2011), 349-388.
B. Mesablishvili and R. Wisbauer, Notes on bimonads and Hopf monads, Theory
Appl. Categ., 26(10) (2012), 281-303.
B. Mesablishvili and R. Wisbauer, QF functors and (co)monads, J. Algebra,
376 (2013), 101-122.
B. Mesablishvili and R. Wisbauer, The fundamental theorem for weak braided
bimonads, J. Algebra, 490 (2017), 55-103.
J. W. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. of
Math., 81(2) (1965), 211-264.
K. Morita, Duality for modules and its applications to the theory of rings with
minimum condition, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A, 6 (1958), 83-142.
A. V. Roiter, Matrix problems and representations of BOCSs, Representation
Theory I, Lecture Notes in Math., 831, Springer, Berlin-New York, (1980),
288-324.
M. Sato, Fuller's theorem on equivalences, J. Algebra, 52(1) (1978), 274-284.
M. Sato, On equivalences between module subcategories, J. Algebra, 59(2)
(1979), 412-420.
R. Street, Frobenius monads and pseudomonoids, J. Math. Phys., 45(10)
(2004), 3930-3948.
D. Turi and G. Plotkin, Towards a mathematical operational semantics, Proceedings
12th Ann. IEEE Symp. on Logic in Computer Science, LICS'97, Warsaw,
Poland, (1997).
R. Wisbauer, Foundations of Module and Ring Theory, Algebra, Logic and
Applications, 3, Gordon and Breach Science Publishers, Philadelphia, PA,
1991.
R. Wisbauer, Tilting in module categories, Abelian groups, module theory, and
topology (Padua, 1997), Lecture Notes in Pure and Appl. Math., 201, Dekker,
New York, (1998), 421-444.
R. Wisbauer, Static modules and equivalences, Interactions between ring theory
and representations of algebras (Murcia), Lecture Notes in Pure and Appl.
Math., 210, Dekker, New York, (2000), 423-449.
R. Wisbauer, Algebra versus coalgebras, Appl. Categ. Structures, 16 (2008),
255-295.
R. Wisbauer, Comodules and contramodules, Glasg. Math. J., 52(A) (2010),
151-162.
R. Wisbauer, Regular pairings of functors and weak (co)monads, Algebra Discrete
Math., 15(1) (2013), 127-154.
R. Wisbauer, Weak Frobenius monads and Frobenius bimodules, Algebra Discrete
Math., 21(2) (2016), 287-308.
R. Wisbauer, Separability in algebra and category theory, Proc. Aligarh, (2016).
J. Worthington, A bialgebraic approach to automata and formal language theory,
Ann. Pure Appl. Logic, 163(7) (2012), 745-762.
Wisbauer, R. (2018). A CATEGORICAL APPROACH TO ALGEBRAS AND COALGEBRAS. International Electronic Journal of Algebra, 24(24), 153-173. https://doi.org/10.24330/ieja.440239
AMA
Wisbauer R. A CATEGORICAL APPROACH TO ALGEBRAS AND COALGEBRAS. IEJA. Temmuz 2018;24(24):153-173. doi:10.24330/ieja.440239
Chicago
Wisbauer, Robert. “A CATEGORICAL APPROACH TO ALGEBRAS AND COALGEBRAS”. International Electronic Journal of Algebra 24, sy. 24 (Temmuz 2018): 153-73. https://doi.org/10.24330/ieja.440239.
EndNote
Wisbauer R (01 Temmuz 2018) A CATEGORICAL APPROACH TO ALGEBRAS AND COALGEBRAS. International Electronic Journal of Algebra 24 24 153–173.
IEEE
R. Wisbauer, “A CATEGORICAL APPROACH TO ALGEBRAS AND COALGEBRAS”, IEJA, c. 24, sy. 24, ss. 153–173, 2018, doi: 10.24330/ieja.440239.
ISNAD
Wisbauer, Robert. “A CATEGORICAL APPROACH TO ALGEBRAS AND COALGEBRAS”. International Electronic Journal of Algebra 24/24 (Temmuz 2018), 153-173. https://doi.org/10.24330/ieja.440239.
JAMA
Wisbauer R. A CATEGORICAL APPROACH TO ALGEBRAS AND COALGEBRAS. IEJA. 2018;24:153–173.
MLA
Wisbauer, Robert. “A CATEGORICAL APPROACH TO ALGEBRAS AND COALGEBRAS”. International Electronic Journal of Algebra, c. 24, sy. 24, 2018, ss. 153-7, doi:10.24330/ieja.440239.
Vancouver
Wisbauer R. A CATEGORICAL APPROACH TO ALGEBRAS AND COALGEBRAS. IEJA. 2018;24(24):153-7.