Araştırma Makalesi
BibTex RIS Kaynak Göster

FRATTINI PROPERTIES AND NILPOTENCY IN LEIBNIZ ALGEBRAS

Yıl 2019, , 64 - 76, 08.01.2019
https://doi.org/10.24330/ieja.504114

Öz

Ideals that share properties with the Frattini ideal of a Leibniz
algebra are studied. Similar investigations have been considered in group the-
ory. The results will hold for Lie algebras as well. Many of the results involve
nilpotency of these algebras.

Kaynakça

  • Sh. A. Ayupov and B. A. Omirov, On Leibniz algebras, Algebra and operator theory (Tashkent, 1997), Kluwer Acad. Publ., Dordrecht, (1998), 1-12.
  • D. W. Barnes, Some theorems on Leibniz algebras, Comm. Algebra, 39(7) (2011), 2463-2472.
  • D. W. Barnes, Schunck classes of soluble Leibniz algebras, Comm. Algebra, 41(11) (2013), 4046-4065.
  • C. Batten, L. Bosko-Dunbar, A. Hedges, J. T. Hird, K. Stagg and E. Stitzinger, A Frattini Theory for Leibniz algebras, Comm. Algebra, 41(4) (2013), 1547- 1557.
  • C. Batten Ray, A. Combs, N. Gin, A. Hedges, J. T. Hird and L. Zack, Nilpotent Lie and Leibniz algebras, Comm. Algebra, 42(6) (2014), 2404-2410.
  • C. Batten Ray, A. Hedges and E. Stitzinger, Classifying several classes of Leibniz algebras, Algebr. Represent. Theory, 17(2) (2014), 703-712.
  • J. C. Beidleman and T. K. Seo, Generalized Frattini subgroups of nite groups, Paci c J. Math., 23 (1967), 441-450.
  • L. Bosko, A. Hedges, J. T. Hird, N. Schwartz and K. Stagg, Jacobson's re ne- ment of Engel's theorem for Leibniz algebras, Involve, 4(3) (2011), 293-296.
  • T. Burch, M. Harris, A. McAlister, E. Rogers, E. Stitzinger and S. M. Sullivan, 2-recognizeable classes of Leibniz algebras, J. Algebra, 423 (2015), 506-513.
  • I. Demir, K. Misra and E. Stitzinger, On some structures of Leibniz algebras, Recent advances in representation theory, quantum groups, algebraic geometry, and related topics, Amer. Math. Soc., Providence, RI, Contemp. Math., 623 (2014), 41-54.
  • L.-C. Kappe and J. Kirkland, Some analogues of the Frattini subgroup, Algebra Colloq., 4(4) (1997), 419-426.
  • J.-L. Loday, Une version non commutative des algebres de Lie: les algebres de Leibniz, Enseign. Math., 39 (1993), 269-293.
  • K. Stagg, Analogues of the Frattini subalgebra, Int. Electron. J. Algebra, 9 (2011), 124-132.
  • D. A. Towers, A Frattini theory for algebras, Proc. London Math. Soc., 27 (1973), 440-462.
  • D. Towers, Two ideals of an algebra closely related to its Frattini ideal, Arch. Math. (Basel), 35(1-2) (1980), 112-120.
Yıl 2019, , 64 - 76, 08.01.2019
https://doi.org/10.24330/ieja.504114

Öz

Kaynakça

  • Sh. A. Ayupov and B. A. Omirov, On Leibniz algebras, Algebra and operator theory (Tashkent, 1997), Kluwer Acad. Publ., Dordrecht, (1998), 1-12.
  • D. W. Barnes, Some theorems on Leibniz algebras, Comm. Algebra, 39(7) (2011), 2463-2472.
  • D. W. Barnes, Schunck classes of soluble Leibniz algebras, Comm. Algebra, 41(11) (2013), 4046-4065.
  • C. Batten, L. Bosko-Dunbar, A. Hedges, J. T. Hird, K. Stagg and E. Stitzinger, A Frattini Theory for Leibniz algebras, Comm. Algebra, 41(4) (2013), 1547- 1557.
  • C. Batten Ray, A. Combs, N. Gin, A. Hedges, J. T. Hird and L. Zack, Nilpotent Lie and Leibniz algebras, Comm. Algebra, 42(6) (2014), 2404-2410.
  • C. Batten Ray, A. Hedges and E. Stitzinger, Classifying several classes of Leibniz algebras, Algebr. Represent. Theory, 17(2) (2014), 703-712.
  • J. C. Beidleman and T. K. Seo, Generalized Frattini subgroups of nite groups, Paci c J. Math., 23 (1967), 441-450.
  • L. Bosko, A. Hedges, J. T. Hird, N. Schwartz and K. Stagg, Jacobson's re ne- ment of Engel's theorem for Leibniz algebras, Involve, 4(3) (2011), 293-296.
  • T. Burch, M. Harris, A. McAlister, E. Rogers, E. Stitzinger and S. M. Sullivan, 2-recognizeable classes of Leibniz algebras, J. Algebra, 423 (2015), 506-513.
  • I. Demir, K. Misra and E. Stitzinger, On some structures of Leibniz algebras, Recent advances in representation theory, quantum groups, algebraic geometry, and related topics, Amer. Math. Soc., Providence, RI, Contemp. Math., 623 (2014), 41-54.
  • L.-C. Kappe and J. Kirkland, Some analogues of the Frattini subgroup, Algebra Colloq., 4(4) (1997), 419-426.
  • J.-L. Loday, Une version non commutative des algebres de Lie: les algebres de Leibniz, Enseign. Math., 39 (1993), 269-293.
  • K. Stagg, Analogues of the Frattini subalgebra, Int. Electron. J. Algebra, 9 (2011), 124-132.
  • D. A. Towers, A Frattini theory for algebras, Proc. London Math. Soc., 27 (1973), 440-462.
  • D. Towers, Two ideals of an algebra closely related to its Frattini ideal, Arch. Math. (Basel), 35(1-2) (1980), 112-120.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Allison Mcalister Bu kişi benim

Kristen Stagg Rovira Bu kişi benim

Ernie Stitzinger

Yayımlanma Tarihi 8 Ocak 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Mcalister, A., Rovira, K. S., & Stitzinger, E. (2019). FRATTINI PROPERTIES AND NILPOTENCY IN LEIBNIZ ALGEBRAS. International Electronic Journal of Algebra, 25(25), 64-76. https://doi.org/10.24330/ieja.504114
AMA Mcalister A, Rovira KS, Stitzinger E. FRATTINI PROPERTIES AND NILPOTENCY IN LEIBNIZ ALGEBRAS. IEJA. Ocak 2019;25(25):64-76. doi:10.24330/ieja.504114
Chicago Mcalister, Allison, Kristen Stagg Rovira, ve Ernie Stitzinger. “FRATTINI PROPERTIES AND NILPOTENCY IN LEIBNIZ ALGEBRAS”. International Electronic Journal of Algebra 25, sy. 25 (Ocak 2019): 64-76. https://doi.org/10.24330/ieja.504114.
EndNote Mcalister A, Rovira KS, Stitzinger E (01 Ocak 2019) FRATTINI PROPERTIES AND NILPOTENCY IN LEIBNIZ ALGEBRAS. International Electronic Journal of Algebra 25 25 64–76.
IEEE A. Mcalister, K. S. Rovira, ve E. Stitzinger, “FRATTINI PROPERTIES AND NILPOTENCY IN LEIBNIZ ALGEBRAS”, IEJA, c. 25, sy. 25, ss. 64–76, 2019, doi: 10.24330/ieja.504114.
ISNAD Mcalister, Allison vd. “FRATTINI PROPERTIES AND NILPOTENCY IN LEIBNIZ ALGEBRAS”. International Electronic Journal of Algebra 25/25 (Ocak 2019), 64-76. https://doi.org/10.24330/ieja.504114.
JAMA Mcalister A, Rovira KS, Stitzinger E. FRATTINI PROPERTIES AND NILPOTENCY IN LEIBNIZ ALGEBRAS. IEJA. 2019;25:64–76.
MLA Mcalister, Allison vd. “FRATTINI PROPERTIES AND NILPOTENCY IN LEIBNIZ ALGEBRAS”. International Electronic Journal of Algebra, c. 25, sy. 25, 2019, ss. 64-76, doi:10.24330/ieja.504114.
Vancouver Mcalister A, Rovira KS, Stitzinger E. FRATTINI PROPERTIES AND NILPOTENCY IN LEIBNIZ ALGEBRAS. IEJA. 2019;25(25):64-76.