Araştırma Makalesi
BibTex RIS Kaynak Göster

GROUP PARTITIONS VIA COMMUTATIVITY

Yıl 2019, , 224 - 231, 08.01.2019
https://doi.org/10.24330/ieja.504159

Öz

Let $G$ be a nonabelian group, $A\subset G$ an abelian subgroup and $n\geqslant 2$ an integer.
We say that $G$ has an $n$-abelian partition with respect to $A$,
if there exists a partition of $G$ into  $A$ and $n$ disjoint commuting
subsets $A_1,  A_2,\ldots, A_n$ of $G$,  such that $|A_i|>1$ for each $i=1, 2, \ldots, n$.
We classify all nonabelian groups, up to isomorphism,  which have an $n$-abelian
partition, for $n=2$ and $3$.

Kaynakça

  • S. M. Belcastro and G. J. Sherman, Counting centralizers in fi nite groups, Math. Mag., 67(5) (1994), 366-374.
  • E. A. Bertram, Some applications of graph theory to finite groups, Discrete Math., 44(1) (1983), 31-43.
  • A. Brandstadt, Partitions of graphs into one or two independent sets and cliques, Discrete Math., 152(1-3) (1996), 47-54.
  • J. R. Britnell and N. Gill, Perfect commuting graphs, J. Group Theory, 20(1) (2017), 71-102.
  • A. K. Das and D. Nongsiang, On the genus of the commuting graphs of finite non-abelian groups, Int. Electron. J. Algebra, 19 (2016), 91-109.
  • S. Foldes and P. L. Hammer, Split graphs, Proceedings of the Eighth Southeastern Conference on Combinatorics, Graph Theory and Computing (Louisiana State Univ., Baton Rouge, La., 1977), 311-315.
  • N. Ito, On fi nite groups with given conjugate types I, Nagoya Math. J., 6 (1953), 17-28.
  • A. Mahmoudifar and A. R. Moghaddamfar, Commuting graphs of groups and related numerical parameters, Comm. Algebra, 45(7) (2017), 3159-3165.
  • L. Pyber, The number of pairwise noncommuting elements and the index of the centre in a fi nite group, J. London Math. Soc., 35(2) (1987), 287-295.
  • G. Scorza, I gruppi che possono pensarsi come somme di tre loro sottogruppi, Boll. Unione Mat. Ital., (1926), 216-218.
Yıl 2019, , 224 - 231, 08.01.2019
https://doi.org/10.24330/ieja.504159

Öz

Kaynakça

  • S. M. Belcastro and G. J. Sherman, Counting centralizers in fi nite groups, Math. Mag., 67(5) (1994), 366-374.
  • E. A. Bertram, Some applications of graph theory to finite groups, Discrete Math., 44(1) (1983), 31-43.
  • A. Brandstadt, Partitions of graphs into one or two independent sets and cliques, Discrete Math., 152(1-3) (1996), 47-54.
  • J. R. Britnell and N. Gill, Perfect commuting graphs, J. Group Theory, 20(1) (2017), 71-102.
  • A. K. Das and D. Nongsiang, On the genus of the commuting graphs of finite non-abelian groups, Int. Electron. J. Algebra, 19 (2016), 91-109.
  • S. Foldes and P. L. Hammer, Split graphs, Proceedings of the Eighth Southeastern Conference on Combinatorics, Graph Theory and Computing (Louisiana State Univ., Baton Rouge, La., 1977), 311-315.
  • N. Ito, On fi nite groups with given conjugate types I, Nagoya Math. J., 6 (1953), 17-28.
  • A. Mahmoudifar and A. R. Moghaddamfar, Commuting graphs of groups and related numerical parameters, Comm. Algebra, 45(7) (2017), 3159-3165.
  • L. Pyber, The number of pairwise noncommuting elements and the index of the centre in a fi nite group, J. London Math. Soc., 35(2) (1987), 287-295.
  • G. Scorza, I gruppi che possono pensarsi come somme di tre loro sottogruppi, Boll. Unione Mat. Ital., (1926), 216-218.
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

A. Mahmoudifar Bu kişi benim

A. R. Moghaddamfar Bu kişi benim

F. Salehzadeh Bu kişi benim

Yayımlanma Tarihi 8 Ocak 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Mahmoudifar, A., Moghaddamfar, A. R., & Salehzadeh, F. (2019). GROUP PARTITIONS VIA COMMUTATIVITY. International Electronic Journal of Algebra, 25(25), 224-231. https://doi.org/10.24330/ieja.504159
AMA Mahmoudifar A, Moghaddamfar AR, Salehzadeh F. GROUP PARTITIONS VIA COMMUTATIVITY. IEJA. Ocak 2019;25(25):224-231. doi:10.24330/ieja.504159
Chicago Mahmoudifar, A., A. R. Moghaddamfar, ve F. Salehzadeh. “GROUP PARTITIONS VIA COMMUTATIVITY”. International Electronic Journal of Algebra 25, sy. 25 (Ocak 2019): 224-31. https://doi.org/10.24330/ieja.504159.
EndNote Mahmoudifar A, Moghaddamfar AR, Salehzadeh F (01 Ocak 2019) GROUP PARTITIONS VIA COMMUTATIVITY. International Electronic Journal of Algebra 25 25 224–231.
IEEE A. Mahmoudifar, A. R. Moghaddamfar, ve F. Salehzadeh, “GROUP PARTITIONS VIA COMMUTATIVITY”, IEJA, c. 25, sy. 25, ss. 224–231, 2019, doi: 10.24330/ieja.504159.
ISNAD Mahmoudifar, A. vd. “GROUP PARTITIONS VIA COMMUTATIVITY”. International Electronic Journal of Algebra 25/25 (Ocak 2019), 224-231. https://doi.org/10.24330/ieja.504159.
JAMA Mahmoudifar A, Moghaddamfar AR, Salehzadeh F. GROUP PARTITIONS VIA COMMUTATIVITY. IEJA. 2019;25:224–231.
MLA Mahmoudifar, A. vd. “GROUP PARTITIONS VIA COMMUTATIVITY”. International Electronic Journal of Algebra, c. 25, sy. 25, 2019, ss. 224-31, doi:10.24330/ieja.504159.
Vancouver Mahmoudifar A, Moghaddamfar AR, Salehzadeh F. GROUP PARTITIONS VIA COMMUTATIVITY. IEJA. 2019;25(25):224-31.