Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, , 13 - 28, 11.07.2019
https://doi.org/10.24330/ieja.586882

Öz

Kaynakça

  • H. I. Blau, Table algebras, European J. Combin., 30(6) (2009), 1426-1455.
  • A. Hanaki, Character products of association schemes, J. Algebra, 283(2) (2005), 596-603.
  • A. Herman, M. Muzychuk and B. Xu, The recognition problem for table algebras and reality-based algebras, J. Algebra, 479 (2017), 173-191.
  • A. Masuoka, Semisimple Hopf algebras of dimension 6,8, Israel J. Math., 92 (1995), 361-373.
  • A. Masuoka, The p^n theorem for semisimple Hopf algebras, Proc. Amer. Math. Soc., 124 (1996), 735-737.
  • D. E. Radford, Hopf Algebras, Series on Knots and Everything, 49, World Scienti c Publishing Co. Pte. Ltd., Hackensack, NJ, 2012.
  • Y. Zhu, Hopf algebras of prime dimension, Internat. Math. Res. Notices, 1 (1994), 53-59.

EXTENDING TABLE ALGEBRAS TO HOPF ALGEBRAS

Yıl 2019, , 13 - 28, 11.07.2019
https://doi.org/10.24330/ieja.586882

Öz

Let $A$ be a table algebra with standard basis $\mathbf{B}$, multiplication $\mu$, unit map $\eta$, skew-linear involution $*$, and degree map $\delta$.  In this article we study the possible coalgebra structures $(A,\Delta, \delta)$ on $A$ for which $(A, \mu, \eta, \Delta, \delta)$ becomes a Hopf algebra with respect to some antipode.  We show that such Hopf algebra structures are not always available for noncommutative table algebras.  On the other hand, commutative table algebras will always have a Hopf algebra structure induced from an algebra-isomorphic group algebra.  To illustrate our approach, we derive Hopf algebra comultiplications on table algebras of dimension 2 and 3.

Kaynakça

  • H. I. Blau, Table algebras, European J. Combin., 30(6) (2009), 1426-1455.
  • A. Hanaki, Character products of association schemes, J. Algebra, 283(2) (2005), 596-603.
  • A. Herman, M. Muzychuk and B. Xu, The recognition problem for table algebras and reality-based algebras, J. Algebra, 479 (2017), 173-191.
  • A. Masuoka, Semisimple Hopf algebras of dimension 6,8, Israel J. Math., 92 (1995), 361-373.
  • A. Masuoka, The p^n theorem for semisimple Hopf algebras, Proc. Amer. Math. Soc., 124 (1996), 735-737.
  • D. E. Radford, Hopf Algebras, Series on Knots and Everything, 49, World Scienti c Publishing Co. Pte. Ltd., Hackensack, NJ, 2012.
  • Y. Zhu, Hopf algebras of prime dimension, Internat. Math. Res. Notices, 1 (1994), 53-59.
Toplam 7 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Allen Herman Bu kişi benim

Gurmail Singh Bu kişi benim

Yayımlanma Tarihi 11 Temmuz 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Herman, A., & Singh, G. (2019). EXTENDING TABLE ALGEBRAS TO HOPF ALGEBRAS. International Electronic Journal of Algebra, 26(26), 13-28. https://doi.org/10.24330/ieja.586882
AMA Herman A, Singh G. EXTENDING TABLE ALGEBRAS TO HOPF ALGEBRAS. IEJA. Temmuz 2019;26(26):13-28. doi:10.24330/ieja.586882
Chicago Herman, Allen, ve Gurmail Singh. “EXTENDING TABLE ALGEBRAS TO HOPF ALGEBRAS”. International Electronic Journal of Algebra 26, sy. 26 (Temmuz 2019): 13-28. https://doi.org/10.24330/ieja.586882.
EndNote Herman A, Singh G (01 Temmuz 2019) EXTENDING TABLE ALGEBRAS TO HOPF ALGEBRAS. International Electronic Journal of Algebra 26 26 13–28.
IEEE A. Herman ve G. Singh, “EXTENDING TABLE ALGEBRAS TO HOPF ALGEBRAS”, IEJA, c. 26, sy. 26, ss. 13–28, 2019, doi: 10.24330/ieja.586882.
ISNAD Herman, Allen - Singh, Gurmail. “EXTENDING TABLE ALGEBRAS TO HOPF ALGEBRAS”. International Electronic Journal of Algebra 26/26 (Temmuz 2019), 13-28. https://doi.org/10.24330/ieja.586882.
JAMA Herman A, Singh G. EXTENDING TABLE ALGEBRAS TO HOPF ALGEBRAS. IEJA. 2019;26:13–28.
MLA Herman, Allen ve Gurmail Singh. “EXTENDING TABLE ALGEBRAS TO HOPF ALGEBRAS”. International Electronic Journal of Algebra, c. 26, sy. 26, 2019, ss. 13-28, doi:10.24330/ieja.586882.
Vancouver Herman A, Singh G. EXTENDING TABLE ALGEBRAS TO HOPF ALGEBRAS. IEJA. 2019;26(26):13-28.

Cited By