Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, , 206 - 219, 14.07.2020
https://doi.org/10.24330/ieja.768265

Öz

Kaynakça

  • I. Constantinescu, W. Heise and T. Honold, Monomial extensions of isometries between codes over $\mathbb{Z}_M$, Proceedings of the 5th International Workshop on Algebraic and Combinatorial Coding Theory (ACCT '96), Unicorn Shumen, (1996), 98-104.
  • M. Greferath and S. E. Schmidt, Gray isometries for finite chain rings and a nonlinear ternary $(36,3^{12},15)$ code, IEEE Trans. Inform. Theory, 45(7) (1999), 2522-2524.
  • M. Greferath and S. E. Schmidt, Finite-ring combinatorics and MacWilliams' Equivalence Theorem, J. Combin. Theory Ser. A, 92 (2000), 17-28.
  • T. Honold, Characterization of finite Frobenius rings, Arch. Math. (Basel), 76 (2001), 406-415.
  • B. R. MacDonald, Finite Rings with Identity, Pure and Applied Mathematics, 28, Marcel Dekker, Inc., New York, 1974.
  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, I, North-Holland Mathematical Library, 16, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.
  • A. A. Nechaev and T. Honold, Fully weighted modules and representations of codes, Problems Inform. Transmission, 35(3) (1999), 205-223.
  • P. Rabizzoni, Relation between the minimum weight of a linear code over $GF(q^m)$ and its q-ary image over $GF(q)$, Coding theory and applications (Toulon, 1988), Lecture Notes in Comput. Sci., Springer, New York, 388 (1989), 209-212.
  • P. Sole and V. Sison, Bounds on the minimum homogeneous distance of the $p^r$-ary image of linear block codes over the Galois ring $GR(p^r,m)$, IEEE Trans. Inform. Theory, 53(6) (2007), 2270-2273.
  • Z.-X. Wan, Lectures on Finite Fields and Galois Rings, World Scientific Publishing Co., Inc., River Edge, NJ, 2003.

BASES AND AUTOMORPHISM MATRIX OF THE GALOIS RING $GR(p^r,m)$ OVER $\mathbb{Z}_{p^r}$

Yıl 2020, , 206 - 219, 14.07.2020
https://doi.org/10.24330/ieja.768265

Öz

Let $GR(p^r,m)$ denote the Galois ring of characteristic $p^r$ and cardinality $p^{rm}$ seen as a free module of rank $m$ over the integer ring $\mathbb{Z}_{p^r}$. A general formula for the sum of the homogeneous weights of the $p^r$-ary images of elements of $GR(p^r,m)$ under any basis is derived in terms of the parameters of $GR(p^r,m)$. By using a Vandermonde matrix over $GR(p^r,m)$ with respect to the generalized Frobenius automorphism, a constructive proof that every basis of $GR(p^r,m)$ has a unique dual basis is given. It is shown that a basis is self-dual if and only if its automorphism matrix is orthogonal, and that a basis is normal if and only if its automorphism matrix is symmetric.

Kaynakça

  • I. Constantinescu, W. Heise and T. Honold, Monomial extensions of isometries between codes over $\mathbb{Z}_M$, Proceedings of the 5th International Workshop on Algebraic and Combinatorial Coding Theory (ACCT '96), Unicorn Shumen, (1996), 98-104.
  • M. Greferath and S. E. Schmidt, Gray isometries for finite chain rings and a nonlinear ternary $(36,3^{12},15)$ code, IEEE Trans. Inform. Theory, 45(7) (1999), 2522-2524.
  • M. Greferath and S. E. Schmidt, Finite-ring combinatorics and MacWilliams' Equivalence Theorem, J. Combin. Theory Ser. A, 92 (2000), 17-28.
  • T. Honold, Characterization of finite Frobenius rings, Arch. Math. (Basel), 76 (2001), 406-415.
  • B. R. MacDonald, Finite Rings with Identity, Pure and Applied Mathematics, 28, Marcel Dekker, Inc., New York, 1974.
  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, I, North-Holland Mathematical Library, 16, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.
  • A. A. Nechaev and T. Honold, Fully weighted modules and representations of codes, Problems Inform. Transmission, 35(3) (1999), 205-223.
  • P. Rabizzoni, Relation between the minimum weight of a linear code over $GF(q^m)$ and its q-ary image over $GF(q)$, Coding theory and applications (Toulon, 1988), Lecture Notes in Comput. Sci., Springer, New York, 388 (1989), 209-212.
  • P. Sole and V. Sison, Bounds on the minimum homogeneous distance of the $p^r$-ary image of linear block codes over the Galois ring $GR(p^r,m)$, IEEE Trans. Inform. Theory, 53(6) (2007), 2270-2273.
  • Z.-X. Wan, Lectures on Finite Fields and Galois Rings, World Scientific Publishing Co., Inc., River Edge, NJ, 2003.
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Virgilio P. Sıson Bu kişi benim

Yayımlanma Tarihi 14 Temmuz 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Sıson, V. P. (2020). BASES AND AUTOMORPHISM MATRIX OF THE GALOIS RING $GR(p^r,m)$ OVER $\mathbb{Z}_{p^r}$. International Electronic Journal of Algebra, 28(28), 206-219. https://doi.org/10.24330/ieja.768265
AMA Sıson VP. BASES AND AUTOMORPHISM MATRIX OF THE GALOIS RING $GR(p^r,m)$ OVER $\mathbb{Z}_{p^r}$. IEJA. Temmuz 2020;28(28):206-219. doi:10.24330/ieja.768265
Chicago Sıson, Virgilio P. “BASES AND AUTOMORPHISM MATRIX OF THE GALOIS RING $GR(p^r,m)$ OVER $\mathbb{Z}_{p^r}$”. International Electronic Journal of Algebra 28, sy. 28 (Temmuz 2020): 206-19. https://doi.org/10.24330/ieja.768265.
EndNote Sıson VP (01 Temmuz 2020) BASES AND AUTOMORPHISM MATRIX OF THE GALOIS RING $GR(p^r,m)$ OVER $\mathbb{Z}_{p^r}$. International Electronic Journal of Algebra 28 28 206–219.
IEEE V. P. Sıson, “BASES AND AUTOMORPHISM MATRIX OF THE GALOIS RING $GR(p^r,m)$ OVER $\mathbb{Z}_{p^r}$”, IEJA, c. 28, sy. 28, ss. 206–219, 2020, doi: 10.24330/ieja.768265.
ISNAD Sıson, Virgilio P. “BASES AND AUTOMORPHISM MATRIX OF THE GALOIS RING $GR(p^r,m)$ OVER $\mathbb{Z}_{p^r}$”. International Electronic Journal of Algebra 28/28 (Temmuz 2020), 206-219. https://doi.org/10.24330/ieja.768265.
JAMA Sıson VP. BASES AND AUTOMORPHISM MATRIX OF THE GALOIS RING $GR(p^r,m)$ OVER $\mathbb{Z}_{p^r}$. IEJA. 2020;28:206–219.
MLA Sıson, Virgilio P. “BASES AND AUTOMORPHISM MATRIX OF THE GALOIS RING $GR(p^r,m)$ OVER $\mathbb{Z}_{p^r}$”. International Electronic Journal of Algebra, c. 28, sy. 28, 2020, ss. 206-19, doi:10.24330/ieja.768265.
Vancouver Sıson VP. BASES AND AUTOMORPHISM MATRIX OF THE GALOIS RING $GR(p^r,m)$ OVER $\mathbb{Z}_{p^r}$. IEJA. 2020;28(28):206-19.