BibTex RIS Kaynak Göster

MULTIPLICATIVE SUBSETS OF ATOMS

Yıl 2015, Cilt: 18 Sayı: 18, 107 - 116, 01.12.2015
https://doi.org/10.24330/ieja.266207

Öz

A reduced, cancellative, torsion-free, commutative monoid M can
be embedded in an integral domain R, where the atoms (irreducible elements)
of M correspond to a subset of the atoms of R. This fact was used by J.
Coykendall and B. Mammenga to show that for any reduced, cancellative,
torsion-free, commutative, atomic monoid M, there exists an integral domain
R with atomic factorization structure isomorphic to M. More generally, we
show that any “nice” subset of atoms of R can be realized as the set of atoms
of an integral domain T that contains R. We will also give several applications
of this result.

Yıl 2015, Cilt: 18 Sayı: 18, 107 - 116, 01.12.2015
https://doi.org/10.24330/ieja.266207

Öz

Toplam 0 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA38HB49KU
Bölüm Makaleler
Yazarlar

Ashley Rand Bu kişi benim

Yayımlanma Tarihi 1 Aralık 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 18 Sayı: 18

Kaynak Göster

APA Rand, A. (2015). MULTIPLICATIVE SUBSETS OF ATOMS. International Electronic Journal of Algebra, 18(18), 107-116. https://doi.org/10.24330/ieja.266207
AMA Rand A. MULTIPLICATIVE SUBSETS OF ATOMS. IEJA. Aralık 2015;18(18):107-116. doi:10.24330/ieja.266207
Chicago Rand, Ashley. “MULTIPLICATIVE SUBSETS OF ATOMS”. International Electronic Journal of Algebra 18, sy. 18 (Aralık 2015): 107-16. https://doi.org/10.24330/ieja.266207.
EndNote Rand A (01 Aralık 2015) MULTIPLICATIVE SUBSETS OF ATOMS. International Electronic Journal of Algebra 18 18 107–116.
IEEE A. Rand, “MULTIPLICATIVE SUBSETS OF ATOMS”, IEJA, c. 18, sy. 18, ss. 107–116, 2015, doi: 10.24330/ieja.266207.
ISNAD Rand, Ashley. “MULTIPLICATIVE SUBSETS OF ATOMS”. International Electronic Journal of Algebra 18/18 (Aralık 2015), 107-116. https://doi.org/10.24330/ieja.266207.
JAMA Rand A. MULTIPLICATIVE SUBSETS OF ATOMS. IEJA. 2015;18:107–116.
MLA Rand, Ashley. “MULTIPLICATIVE SUBSETS OF ATOMS”. International Electronic Journal of Algebra, c. 18, sy. 18, 2015, ss. 107-16, doi:10.24330/ieja.266207.
Vancouver Rand A. MULTIPLICATIVE SUBSETS OF ATOMS. IEJA. 2015;18(18):107-16.