BibTex RIS Kaynak Göster

PSEUDO QP-INJECTIVE MODULES AND GENERALIZED PSEUDO QP-INJECTIVE MODULES

Yıl 2013, Cilt: 14 Sayı: 14, 32 - 43, 01.12.2013

Öz

Let M be a right R-module with S = End(MR). Then MR is
called pseudo QP-injective (or P QP-injective for short) if every monomorphism
from an M-cyclic submodule of M to M extends to an endomorphism
of M . MR is called generalized pseudo QP-injective (or GP QP-injective for
short) if, for any 0 6= s ∈ S, there exists a positive integer n such that s
n 6= 0 and every monomorphism from snM to M extends to an endomorphism of
M. Characterizations and properties of the two classes of modules are studied.
The two classes of modules with some additional conditions are studied,
semisimple artinian rings are characterized by P QP-injective modules.

Kaynakça

  • T. Albu and R. Wisbauer, Kasch Modules, In: Advances in Ring Theory (Eds.: Jain, S.K., and Rizvi, S.T.), Birkh¨auser, (1997), 1-16.
  • F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, New Yock-Heidelberg-Berlin, Springer-Verlag, 1974.
  • A. K. Chaturvedi, B. M. Pandeya, A. J. Gupta, Quasi-pseudo principally in- jective modules, Algebra Colloq., 16(3) (2009), 397-402 .
  • S. K. Jain, S. R. L´opez-Permouth and S. Singh, On a class of QI-rings, Glasgow Math. J., 34(1) (1992), 75-81 .
  • S. K. Jain and S. Singh, Quasi-injective and pseudo-injective modules, Canad. Math. Bull., 18(3) (1975), 359-366 .
  • S. H. Mohamed, B. J. M¨uller, Continuous and Discrete Modules, London Math. Soc. Lecture Note Series 147, Cambridge University Press, Cambridge, 1990.
  • W. K. Nicholson and M. F. Yousif, Mininjective rings, J. Algebra, 187(2) (1997), 548-578.
  • N. V. Sanh, K. P. Shum, S. Dhompongsa and S. Wangwai, On quasi-principally injective modules, Algebra Colloq., 6(3) (1999), 269-276.
  • B. Stenstr¨om, Rings of Quotients, Berlin-Heidelberg-New Yock, Springer- Verlag, 1975.
  • R. Wisbauer, Foundation of Module and Ring Theory, Gordon and Breach Reading, Pennsylvania, 1991.
  • M. F. Yousif and Y. Q. Zhou, Rings for which certain elements have the prin- cipal extension property, Algebra Colloq., 10(4) (2003), 501-512 .
  • Z. M. Zhu, MP-injective rings and MGP-injective rings, Indian J. Pure. Appl. Math., 41(5) (2010), 627-645 .
  • Z. M. Zhu, Pseudo PQ-injective modules, Turkish J. Math., 35(3) (2011), 391
  • Z. M. Zhu and Z. S. Tan, Minimal quasi-injective modules, Sci. Math. Jpn., 62 (2005), 465-469.
  • Z. M. Zhu and J. X. Yu, On GC2modules and their endomorphism rings, Linear and Multilinear Algebra, 56(5) (2008), 511-515. Zhanmin Zhu
  • Department of Mathematics Jiaxing University Jiaxing, Zhejiang Province, P.R.China e-mail: zhanmin zhu@hotmail.com
Yıl 2013, Cilt: 14 Sayı: 14, 32 - 43, 01.12.2013

Öz

Kaynakça

  • T. Albu and R. Wisbauer, Kasch Modules, In: Advances in Ring Theory (Eds.: Jain, S.K., and Rizvi, S.T.), Birkh¨auser, (1997), 1-16.
  • F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, New Yock-Heidelberg-Berlin, Springer-Verlag, 1974.
  • A. K. Chaturvedi, B. M. Pandeya, A. J. Gupta, Quasi-pseudo principally in- jective modules, Algebra Colloq., 16(3) (2009), 397-402 .
  • S. K. Jain, S. R. L´opez-Permouth and S. Singh, On a class of QI-rings, Glasgow Math. J., 34(1) (1992), 75-81 .
  • S. K. Jain and S. Singh, Quasi-injective and pseudo-injective modules, Canad. Math. Bull., 18(3) (1975), 359-366 .
  • S. H. Mohamed, B. J. M¨uller, Continuous and Discrete Modules, London Math. Soc. Lecture Note Series 147, Cambridge University Press, Cambridge, 1990.
  • W. K. Nicholson and M. F. Yousif, Mininjective rings, J. Algebra, 187(2) (1997), 548-578.
  • N. V. Sanh, K. P. Shum, S. Dhompongsa and S. Wangwai, On quasi-principally injective modules, Algebra Colloq., 6(3) (1999), 269-276.
  • B. Stenstr¨om, Rings of Quotients, Berlin-Heidelberg-New Yock, Springer- Verlag, 1975.
  • R. Wisbauer, Foundation of Module and Ring Theory, Gordon and Breach Reading, Pennsylvania, 1991.
  • M. F. Yousif and Y. Q. Zhou, Rings for which certain elements have the prin- cipal extension property, Algebra Colloq., 10(4) (2003), 501-512 .
  • Z. M. Zhu, MP-injective rings and MGP-injective rings, Indian J. Pure. Appl. Math., 41(5) (2010), 627-645 .
  • Z. M. Zhu, Pseudo PQ-injective modules, Turkish J. Math., 35(3) (2011), 391
  • Z. M. Zhu and Z. S. Tan, Minimal quasi-injective modules, Sci. Math. Jpn., 62 (2005), 465-469.
  • Z. M. Zhu and J. X. Yu, On GC2modules and their endomorphism rings, Linear and Multilinear Algebra, 56(5) (2008), 511-515. Zhanmin Zhu
  • Department of Mathematics Jiaxing University Jiaxing, Zhejiang Province, P.R.China e-mail: zhanmin zhu@hotmail.com
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA99VK96PA
Bölüm Makaleler
Yazarlar

Zhanmin Zhu Bu kişi benim

Yayımlanma Tarihi 1 Aralık 2013
Yayımlandığı Sayı Yıl 2013 Cilt: 14 Sayı: 14

Kaynak Göster

APA Zhu, Z. (2013). PSEUDO QP-INJECTIVE MODULES AND GENERALIZED PSEUDO QP-INJECTIVE MODULES. International Electronic Journal of Algebra, 14(14), 32-43.
AMA Zhu Z. PSEUDO QP-INJECTIVE MODULES AND GENERALIZED PSEUDO QP-INJECTIVE MODULES. IEJA. Aralık 2013;14(14):32-43.
Chicago Zhu, Zhanmin. “PSEUDO QP-INJECTIVE MODULES AND GENERALIZED PSEUDO QP-INJECTIVE MODULES”. International Electronic Journal of Algebra 14, sy. 14 (Aralık 2013): 32-43.
EndNote Zhu Z (01 Aralık 2013) PSEUDO QP-INJECTIVE MODULES AND GENERALIZED PSEUDO QP-INJECTIVE MODULES. International Electronic Journal of Algebra 14 14 32–43.
IEEE Z. Zhu, “PSEUDO QP-INJECTIVE MODULES AND GENERALIZED PSEUDO QP-INJECTIVE MODULES”, IEJA, c. 14, sy. 14, ss. 32–43, 2013.
ISNAD Zhu, Zhanmin. “PSEUDO QP-INJECTIVE MODULES AND GENERALIZED PSEUDO QP-INJECTIVE MODULES”. International Electronic Journal of Algebra 14/14 (Aralık 2013), 32-43.
JAMA Zhu Z. PSEUDO QP-INJECTIVE MODULES AND GENERALIZED PSEUDO QP-INJECTIVE MODULES. IEJA. 2013;14:32–43.
MLA Zhu, Zhanmin. “PSEUDO QP-INJECTIVE MODULES AND GENERALIZED PSEUDO QP-INJECTIVE MODULES”. International Electronic Journal of Algebra, c. 14, sy. 14, 2013, ss. 32-43.
Vancouver Zhu Z. PSEUDO QP-INJECTIVE MODULES AND GENERALIZED PSEUDO QP-INJECTIVE MODULES. IEJA. 2013;14(14):32-43.