BibTex RIS Cite

ON FINITE GROUPS WITH SPECIFIC NUMBER OF CENTRALIZERS

Year 2013, Volume: 13 Issue: 13, 53 - 62, 01.06.2013

Abstract

For a group G, | Cent(G) | denotes the number of distinct centralizers
of its elements. A group G is called n-centralizer if | Cent(G) |= n,
and primitive n-centralizer if | Cent(G) |=| Cent(GZ(G)) |= n. In this paper,
among other things, we investigate the structure of finite groups of odd order
with | Cent(G) |= 9 and prove that if |G| is odd, then | Cent(G) |= 9 if and
only if GZ(G)∼= C7 o C3 or C7 × C7.

References

  • A. Abdollahi, S. M. J. Amiri and A. M. Hassanabadi, Groups with specific number of centralizers, Houston J. Math., 33(1) (2007), 43–57.
  • A. R. Ashrafi, On finite groups with a given number of centralizers, Algebra Colloq., 7(2) (2000), 139–146.
  • A. R. Ashrafi, Counting the centralizers of some finite groups, Korean J. Com- put. Appl. Math., 7(1) (2000), 115–124.
  • A. R. Ashrafi and B. Taeri, On finite groups with exactly seven element cen- tralizers, J. Appl. Math. Comput., 22(1-2) (2006), 403–410.
  • A. R. Ashrafi and B. Taeri, On finite groups with a certain number of central- izers, J. Appl. Math. Comput., 17(1-2) (2005), 217–227.
  • S. M. Belcastro and G. J. Sherman, Counting centralizers in finite groups, Math. Magazine, 67(5) (1994), 366–374.
  • Y. G. Berkovich and E. M. Zhmu´d, Characters of Finite Groups, Part 1, Transl. Math. Monographs 172, Amer. Math. Soc., Providence. RI, 1998.
  • A. Castelaz, Commutativity degree of finite groups, MSc. Thesis, Wake Forest University, North Carolina, May, 2010.
  • J. H. E. Cohn, On n-sum groups, Math. Scand., 75 (1994), 44–58.
  • J. D. Dixon, Problems in Group Theory, Dover Publications, Inc., Mineola, New York, 2007.
  • S. Dolfi, M. Herzog and E. Jabara, Finite groups whose noncentral commuting elements have centralizers of equal size, Bull. Aust. Math Soc., 82 (2010), 293–
  • H. Kurzweil and B. Stellmacher, The Theory of Finite Groups, An Introduc- tion, Springer-Verlag, New York, Inc. 2004.
  • D. J. Rusin, What is the probability that two elements of a finite group com- mute?, Pacific J. Math., 82(1) (1979), 237–247.
  • M. J. Tomkinson, Groups covered by finitely many cosets or subgroups, Comm. Algebra, 15(4) (1987), 845–859.
  • M. Zarrin, On element centralizers in finite groups, Arch. Math., 93 (2009), –503.
  • M. Zarrin, Criteria for the solubility of finite groups by its centralizers, Arch. Math., 96 (2011), 225–226.
  • M. Zarrin, On solubility of groups with finitely many centralizers , Bull. Iranian Math. Soc., to appear. Sekhar Jyoti Baishya Department of Mathematics North-Eastern Hill University Permanent Campus, Shillong-793022 Meghalaya, India e-mail: sekharnehu@yahoo.com
Year 2013, Volume: 13 Issue: 13, 53 - 62, 01.06.2013

Abstract

References

  • A. Abdollahi, S. M. J. Amiri and A. M. Hassanabadi, Groups with specific number of centralizers, Houston J. Math., 33(1) (2007), 43–57.
  • A. R. Ashrafi, On finite groups with a given number of centralizers, Algebra Colloq., 7(2) (2000), 139–146.
  • A. R. Ashrafi, Counting the centralizers of some finite groups, Korean J. Com- put. Appl. Math., 7(1) (2000), 115–124.
  • A. R. Ashrafi and B. Taeri, On finite groups with exactly seven element cen- tralizers, J. Appl. Math. Comput., 22(1-2) (2006), 403–410.
  • A. R. Ashrafi and B. Taeri, On finite groups with a certain number of central- izers, J. Appl. Math. Comput., 17(1-2) (2005), 217–227.
  • S. M. Belcastro and G. J. Sherman, Counting centralizers in finite groups, Math. Magazine, 67(5) (1994), 366–374.
  • Y. G. Berkovich and E. M. Zhmu´d, Characters of Finite Groups, Part 1, Transl. Math. Monographs 172, Amer. Math. Soc., Providence. RI, 1998.
  • A. Castelaz, Commutativity degree of finite groups, MSc. Thesis, Wake Forest University, North Carolina, May, 2010.
  • J. H. E. Cohn, On n-sum groups, Math. Scand., 75 (1994), 44–58.
  • J. D. Dixon, Problems in Group Theory, Dover Publications, Inc., Mineola, New York, 2007.
  • S. Dolfi, M. Herzog and E. Jabara, Finite groups whose noncentral commuting elements have centralizers of equal size, Bull. Aust. Math Soc., 82 (2010), 293–
  • H. Kurzweil and B. Stellmacher, The Theory of Finite Groups, An Introduc- tion, Springer-Verlag, New York, Inc. 2004.
  • D. J. Rusin, What is the probability that two elements of a finite group com- mute?, Pacific J. Math., 82(1) (1979), 237–247.
  • M. J. Tomkinson, Groups covered by finitely many cosets or subgroups, Comm. Algebra, 15(4) (1987), 845–859.
  • M. Zarrin, On element centralizers in finite groups, Arch. Math., 93 (2009), –503.
  • M. Zarrin, Criteria for the solubility of finite groups by its centralizers, Arch. Math., 96 (2011), 225–226.
  • M. Zarrin, On solubility of groups with finitely many centralizers , Bull. Iranian Math. Soc., to appear. Sekhar Jyoti Baishya Department of Mathematics North-Eastern Hill University Permanent Campus, Shillong-793022 Meghalaya, India e-mail: sekharnehu@yahoo.com
There are 17 citations in total.

Details

Other ID JA98VA94JY
Journal Section Articles
Authors

Sekhar Jyoti Baishya This is me

Publication Date June 1, 2013
Published in Issue Year 2013 Volume: 13 Issue: 13

Cite

APA Baishya, S. J. (2013). ON FINITE GROUPS WITH SPECIFIC NUMBER OF CENTRALIZERS. International Electronic Journal of Algebra, 13(13), 53-62.
AMA Baishya SJ. ON FINITE GROUPS WITH SPECIFIC NUMBER OF CENTRALIZERS. IEJA. June 2013;13(13):53-62.
Chicago Baishya, Sekhar Jyoti. “ON FINITE GROUPS WITH SPECIFIC NUMBER OF CENTRALIZERS”. International Electronic Journal of Algebra 13, no. 13 (June 2013): 53-62.
EndNote Baishya SJ (June 1, 2013) ON FINITE GROUPS WITH SPECIFIC NUMBER OF CENTRALIZERS. International Electronic Journal of Algebra 13 13 53–62.
IEEE S. J. Baishya, “ON FINITE GROUPS WITH SPECIFIC NUMBER OF CENTRALIZERS”, IEJA, vol. 13, no. 13, pp. 53–62, 2013.
ISNAD Baishya, Sekhar Jyoti. “ON FINITE GROUPS WITH SPECIFIC NUMBER OF CENTRALIZERS”. International Electronic Journal of Algebra 13/13 (June 2013), 53-62.
JAMA Baishya SJ. ON FINITE GROUPS WITH SPECIFIC NUMBER OF CENTRALIZERS. IEJA. 2013;13:53–62.
MLA Baishya, Sekhar Jyoti. “ON FINITE GROUPS WITH SPECIFIC NUMBER OF CENTRALIZERS”. International Electronic Journal of Algebra, vol. 13, no. 13, 2013, pp. 53-62.
Vancouver Baishya SJ. ON FINITE GROUPS WITH SPECIFIC NUMBER OF CENTRALIZERS. IEJA. 2013;13(13):53-62.