GENERALIZED PRIMARY RINGS
Year 2012,
Volume: 12 Issue: 12, 116 - 132, 01.12.2012
Christine Gorton
Henry E. Heatherly
Ralph P. Tucci
Abstract
The Lasker-Noether concept of a primary ideal is extended in
various ways to the category of associative, not necessarily commutative rings.
Generically these are called generalized primary conditions (right and left).
The structure of generalized primary rings is developed. Special consideration
is given to these rings under various chain conditions. The additive structure
of such rings is addressed in detail. Examples are given to illustrate and delimit
the theory developed.
References
- C. W. Ayoub, Conditions for a ring to be fissile, Acta Math. Acad. Sci. Hun- gar., 30 (1977), 233–237.
- W. Barnes, Primal ideals and isolated components in noncommutative rings, Trans. Amer. Math. Soc., 82 (1956), 1–16.
- H. Bass, Finitistic dimension and homological generalizations of semiprimary rings, Trans. Amer. Math. Soc., 95 (1960), 466–488.
- G. Birkenmeier and H. Heatherly, Embeddings of strongly right bounded rings and algebras, Comm. Algebra, 17 (1989), 573–586.
- A. W. Chatters and C. R. Hajarnavis, Non-commutative rings with primary decomposition, Quart. J. Math. Oxford Ser (2), 22 (1971), 73–83.
- Dinh Van Huynh, Die Spaltbarkeit von MHR-Ringe, Bull. Acad. Polon. Sci., (1977), 939–941.
- J. L. Dorroh, Concerning adjunctions to algebras, Bull. Amer. Math. Soc., 38 (1932), 85–88.
- D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Springer-Verlag, New York, 1994.
- C. Faith, Rings with the minimum condition on principal ideals, Arch. Math., (1959), 327–330.
- S. Feigelstock, Additive Groups of Rings, Pitman, Boston, 1983.
- L. Fuchs, On quasi-primary rings, Acta Scientiarum Math., 20(1947), 174–183.
- L. Fuchs, Abelian Groups, Pergamon Press, Oxford, 1960.
- B. J. Gardner and R. Wiegandt, Radical Theory of Rings, Marcel Dekker, New York, 2004.
- C. Gorton and H. Heatherly, Generalized primary rings, Mathematica Pan- nonica, 17(1) (2006), 17–28.
- H. Heatherly and R. P. Tucci, Right weakly regular rings: a survey, in Ring and Module Theory, Trends in Mathematics, Albu, Birkenmeier, Erdo˘gan, and Tercan (eds.), Birkha¨user, Basel, 115–124. N. Jacobson, Structure of Rings, Rev. ed., Amer. Math. Soc., Providence, R.I., A. Kert´esz, Lectures on Artinian Rings, Akademiai Kiado, Budapest, 1987.
- N. H. McCoy, Prime ideals in general rings, Amer. J. Math., 71 (1949), 823–
- N. H. McCoy, Completely prime and completely semiprime ideals, in Rings, Modules, and Radicals, A. Kert´esz (ed.), North Holland, Amsterdam, 1973, –152.
- E. Noether, Idealtheorie in Ringbereichen, Math. Annalen, 83(1921), 24–66.
- M. Petrich, Rings and Semigroups, Lecture Notes in Mathematics No. 380, Springer-Verlag, Berlin, 1974.
- R.Y. Sharp, Steps in Commutative Algebra, Cambridge Univ. Press, Cam- bridge, 1990.
- A. Smoktunowicz, A simple nil ring exists, Comm. Algebra, 30 (2002), 27-59.
- O. Steinfeld, Remark on a paper by N. H. McCoy, Publ. Math. Debrecen, 3 (1953), 171–173.
- F. A. Sz´asz, ¨Uber Ringe mit Minimalbedingung f¨ur Hauptrechtsideals I, Publ. Math. Debrecen, 7 (1960), 54–64.
- F. A. Sz´asz, ¨Uber Rings mit Minimalbedingung f¨ur Hauptrechtsideals II, Acta Math. Acad. Sci. Hungar., 12 (1961), 417–439.
- F. A. Sz´asz, Radicals of Rings, John Wiley and Sons, New York, 1981. Christine Gorton
- Department of Mathematics, Computer Science, and Statistics McNeese State University Lake Charles, Louisiana, 70609 e-mail: cgorton@mcneese.edu Henry E. Heatherly
- Department of Mathematics University of Louisiana at Lafayette Lafayette, Louisiana, 70504-1010 e-mail: heh5820@louisiana.edu Ralph P. Tucci
- Department of Mathematical Sciences Loyola University New Orleans New Orleans, Louisiana, 70118 e-mail: tucci@loyno.edu
Year 2012,
Volume: 12 Issue: 12, 116 - 132, 01.12.2012
Christine Gorton
Henry E. Heatherly
Ralph P. Tucci
References
- C. W. Ayoub, Conditions for a ring to be fissile, Acta Math. Acad. Sci. Hun- gar., 30 (1977), 233–237.
- W. Barnes, Primal ideals and isolated components in noncommutative rings, Trans. Amer. Math. Soc., 82 (1956), 1–16.
- H. Bass, Finitistic dimension and homological generalizations of semiprimary rings, Trans. Amer. Math. Soc., 95 (1960), 466–488.
- G. Birkenmeier and H. Heatherly, Embeddings of strongly right bounded rings and algebras, Comm. Algebra, 17 (1989), 573–586.
- A. W. Chatters and C. R. Hajarnavis, Non-commutative rings with primary decomposition, Quart. J. Math. Oxford Ser (2), 22 (1971), 73–83.
- Dinh Van Huynh, Die Spaltbarkeit von MHR-Ringe, Bull. Acad. Polon. Sci., (1977), 939–941.
- J. L. Dorroh, Concerning adjunctions to algebras, Bull. Amer. Math. Soc., 38 (1932), 85–88.
- D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Springer-Verlag, New York, 1994.
- C. Faith, Rings with the minimum condition on principal ideals, Arch. Math., (1959), 327–330.
- S. Feigelstock, Additive Groups of Rings, Pitman, Boston, 1983.
- L. Fuchs, On quasi-primary rings, Acta Scientiarum Math., 20(1947), 174–183.
- L. Fuchs, Abelian Groups, Pergamon Press, Oxford, 1960.
- B. J. Gardner and R. Wiegandt, Radical Theory of Rings, Marcel Dekker, New York, 2004.
- C. Gorton and H. Heatherly, Generalized primary rings, Mathematica Pan- nonica, 17(1) (2006), 17–28.
- H. Heatherly and R. P. Tucci, Right weakly regular rings: a survey, in Ring and Module Theory, Trends in Mathematics, Albu, Birkenmeier, Erdo˘gan, and Tercan (eds.), Birkha¨user, Basel, 115–124. N. Jacobson, Structure of Rings, Rev. ed., Amer. Math. Soc., Providence, R.I., A. Kert´esz, Lectures on Artinian Rings, Akademiai Kiado, Budapest, 1987.
- N. H. McCoy, Prime ideals in general rings, Amer. J. Math., 71 (1949), 823–
- N. H. McCoy, Completely prime and completely semiprime ideals, in Rings, Modules, and Radicals, A. Kert´esz (ed.), North Holland, Amsterdam, 1973, –152.
- E. Noether, Idealtheorie in Ringbereichen, Math. Annalen, 83(1921), 24–66.
- M. Petrich, Rings and Semigroups, Lecture Notes in Mathematics No. 380, Springer-Verlag, Berlin, 1974.
- R.Y. Sharp, Steps in Commutative Algebra, Cambridge Univ. Press, Cam- bridge, 1990.
- A. Smoktunowicz, A simple nil ring exists, Comm. Algebra, 30 (2002), 27-59.
- O. Steinfeld, Remark on a paper by N. H. McCoy, Publ. Math. Debrecen, 3 (1953), 171–173.
- F. A. Sz´asz, ¨Uber Ringe mit Minimalbedingung f¨ur Hauptrechtsideals I, Publ. Math. Debrecen, 7 (1960), 54–64.
- F. A. Sz´asz, ¨Uber Rings mit Minimalbedingung f¨ur Hauptrechtsideals II, Acta Math. Acad. Sci. Hungar., 12 (1961), 417–439.
- F. A. Sz´asz, Radicals of Rings, John Wiley and Sons, New York, 1981. Christine Gorton
- Department of Mathematics, Computer Science, and Statistics McNeese State University Lake Charles, Louisiana, 70609 e-mail: cgorton@mcneese.edu Henry E. Heatherly
- Department of Mathematics University of Louisiana at Lafayette Lafayette, Louisiana, 70504-1010 e-mail: heh5820@louisiana.edu Ralph P. Tucci
- Department of Mathematical Sciences Loyola University New Orleans New Orleans, Louisiana, 70118 e-mail: tucci@loyno.edu