BibTex RIS Cite

GENERALIZED PRIMARY RINGS

Year 2012, Volume: 12 Issue: 12, 116 - 132, 01.12.2012

Abstract

The Lasker-Noether concept of a primary ideal is extended in
various ways to the category of associative, not necessarily commutative rings.
Generically these are called generalized primary conditions (right and left).
The structure of generalized primary rings is developed. Special consideration
is given to these rings under various chain conditions. The additive structure
of such rings is addressed in detail. Examples are given to illustrate and delimit
the theory developed.

References

  • C. W. Ayoub, Conditions for a ring to be fissile, Acta Math. Acad. Sci. Hun- gar., 30 (1977), 233–237.
  • W. Barnes, Primal ideals and isolated components in noncommutative rings, Trans. Amer. Math. Soc., 82 (1956), 1–16.
  • H. Bass, Finitistic dimension and homological generalizations of semiprimary rings, Trans. Amer. Math. Soc., 95 (1960), 466–488.
  • G. Birkenmeier and H. Heatherly, Embeddings of strongly right bounded rings and algebras, Comm. Algebra, 17 (1989), 573–586.
  • A. W. Chatters and C. R. Hajarnavis, Non-commutative rings with primary decomposition, Quart. J. Math. Oxford Ser (2), 22 (1971), 73–83.
  • Dinh Van Huynh, Die Spaltbarkeit von MHR-Ringe, Bull. Acad. Polon. Sci., (1977), 939–941.
  • J. L. Dorroh, Concerning adjunctions to algebras, Bull. Amer. Math. Soc., 38 (1932), 85–88.
  • D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Springer-Verlag, New York, 1994.
  • C. Faith, Rings with the minimum condition on principal ideals, Arch. Math., (1959), 327–330.
  • S. Feigelstock, Additive Groups of Rings, Pitman, Boston, 1983.
  • L. Fuchs, On quasi-primary rings, Acta Scientiarum Math., 20(1947), 174–183.
  • L. Fuchs, Abelian Groups, Pergamon Press, Oxford, 1960.
  • B. J. Gardner and R. Wiegandt, Radical Theory of Rings, Marcel Dekker, New York, 2004.
  • C. Gorton and H. Heatherly, Generalized primary rings, Mathematica Pan- nonica, 17(1) (2006), 17–28.
  • H. Heatherly and R. P. Tucci, Right weakly regular rings: a survey, in Ring and Module Theory, Trends in Mathematics, Albu, Birkenmeier, Erdo˘gan, and Tercan (eds.), Birkha¨user, Basel, 115–124. N. Jacobson, Structure of Rings, Rev. ed., Amer. Math. Soc., Providence, R.I., A. Kert´esz, Lectures on Artinian Rings, Akademiai Kiado, Budapest, 1987.
  • N. H. McCoy, Prime ideals in general rings, Amer. J. Math., 71 (1949), 823–
  • N. H. McCoy, Completely prime and completely semiprime ideals, in Rings, Modules, and Radicals, A. Kert´esz (ed.), North Holland, Amsterdam, 1973, –152.
  • E. Noether, Idealtheorie in Ringbereichen, Math. Annalen, 83(1921), 24–66.
  • M. Petrich, Rings and Semigroups, Lecture Notes in Mathematics No. 380, Springer-Verlag, Berlin, 1974.
  • R.Y. Sharp, Steps in Commutative Algebra, Cambridge Univ. Press, Cam- bridge, 1990.
  • A. Smoktunowicz, A simple nil ring exists, Comm. Algebra, 30 (2002), 27-59.
  • O. Steinfeld, Remark on a paper by N. H. McCoy, Publ. Math. Debrecen, 3 (1953), 171–173.
  • F. A. Sz´asz, ¨Uber Ringe mit Minimalbedingung f¨ur Hauptrechtsideals I, Publ. Math. Debrecen, 7 (1960), 54–64.
  • F. A. Sz´asz, ¨Uber Rings mit Minimalbedingung f¨ur Hauptrechtsideals II, Acta Math. Acad. Sci. Hungar., 12 (1961), 417–439.
  • F. A. Sz´asz, Radicals of Rings, John Wiley and Sons, New York, 1981. Christine Gorton
  • Department of Mathematics, Computer Science, and Statistics McNeese State University Lake Charles, Louisiana, 70609 e-mail: cgorton@mcneese.edu Henry E. Heatherly
  • Department of Mathematics University of Louisiana at Lafayette Lafayette, Louisiana, 70504-1010 e-mail: heh5820@louisiana.edu Ralph P. Tucci
  • Department of Mathematical Sciences Loyola University New Orleans New Orleans, Louisiana, 70118 e-mail: tucci@loyno.edu
Year 2012, Volume: 12 Issue: 12, 116 - 132, 01.12.2012

Abstract

References

  • C. W. Ayoub, Conditions for a ring to be fissile, Acta Math. Acad. Sci. Hun- gar., 30 (1977), 233–237.
  • W. Barnes, Primal ideals and isolated components in noncommutative rings, Trans. Amer. Math. Soc., 82 (1956), 1–16.
  • H. Bass, Finitistic dimension and homological generalizations of semiprimary rings, Trans. Amer. Math. Soc., 95 (1960), 466–488.
  • G. Birkenmeier and H. Heatherly, Embeddings of strongly right bounded rings and algebras, Comm. Algebra, 17 (1989), 573–586.
  • A. W. Chatters and C. R. Hajarnavis, Non-commutative rings with primary decomposition, Quart. J. Math. Oxford Ser (2), 22 (1971), 73–83.
  • Dinh Van Huynh, Die Spaltbarkeit von MHR-Ringe, Bull. Acad. Polon. Sci., (1977), 939–941.
  • J. L. Dorroh, Concerning adjunctions to algebras, Bull. Amer. Math. Soc., 38 (1932), 85–88.
  • D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Springer-Verlag, New York, 1994.
  • C. Faith, Rings with the minimum condition on principal ideals, Arch. Math., (1959), 327–330.
  • S. Feigelstock, Additive Groups of Rings, Pitman, Boston, 1983.
  • L. Fuchs, On quasi-primary rings, Acta Scientiarum Math., 20(1947), 174–183.
  • L. Fuchs, Abelian Groups, Pergamon Press, Oxford, 1960.
  • B. J. Gardner and R. Wiegandt, Radical Theory of Rings, Marcel Dekker, New York, 2004.
  • C. Gorton and H. Heatherly, Generalized primary rings, Mathematica Pan- nonica, 17(1) (2006), 17–28.
  • H. Heatherly and R. P. Tucci, Right weakly regular rings: a survey, in Ring and Module Theory, Trends in Mathematics, Albu, Birkenmeier, Erdo˘gan, and Tercan (eds.), Birkha¨user, Basel, 115–124. N. Jacobson, Structure of Rings, Rev. ed., Amer. Math. Soc., Providence, R.I., A. Kert´esz, Lectures on Artinian Rings, Akademiai Kiado, Budapest, 1987.
  • N. H. McCoy, Prime ideals in general rings, Amer. J. Math., 71 (1949), 823–
  • N. H. McCoy, Completely prime and completely semiprime ideals, in Rings, Modules, and Radicals, A. Kert´esz (ed.), North Holland, Amsterdam, 1973, –152.
  • E. Noether, Idealtheorie in Ringbereichen, Math. Annalen, 83(1921), 24–66.
  • M. Petrich, Rings and Semigroups, Lecture Notes in Mathematics No. 380, Springer-Verlag, Berlin, 1974.
  • R.Y. Sharp, Steps in Commutative Algebra, Cambridge Univ. Press, Cam- bridge, 1990.
  • A. Smoktunowicz, A simple nil ring exists, Comm. Algebra, 30 (2002), 27-59.
  • O. Steinfeld, Remark on a paper by N. H. McCoy, Publ. Math. Debrecen, 3 (1953), 171–173.
  • F. A. Sz´asz, ¨Uber Ringe mit Minimalbedingung f¨ur Hauptrechtsideals I, Publ. Math. Debrecen, 7 (1960), 54–64.
  • F. A. Sz´asz, ¨Uber Rings mit Minimalbedingung f¨ur Hauptrechtsideals II, Acta Math. Acad. Sci. Hungar., 12 (1961), 417–439.
  • F. A. Sz´asz, Radicals of Rings, John Wiley and Sons, New York, 1981. Christine Gorton
  • Department of Mathematics, Computer Science, and Statistics McNeese State University Lake Charles, Louisiana, 70609 e-mail: cgorton@mcneese.edu Henry E. Heatherly
  • Department of Mathematics University of Louisiana at Lafayette Lafayette, Louisiana, 70504-1010 e-mail: heh5820@louisiana.edu Ralph P. Tucci
  • Department of Mathematical Sciences Loyola University New Orleans New Orleans, Louisiana, 70118 e-mail: tucci@loyno.edu
There are 28 citations in total.

Details

Other ID JA49DF88SE
Journal Section Articles
Authors

Christine Gorton This is me

Henry E. Heatherly This is me

Ralph P. Tucci This is me

Publication Date December 1, 2012
Published in Issue Year 2012 Volume: 12 Issue: 12

Cite

APA Gorton, C., Heatherly, H. E., & Tucci, R. P. (2012). GENERALIZED PRIMARY RINGS. International Electronic Journal of Algebra, 12(12), 116-132.
AMA Gorton C, Heatherly HE, Tucci RP. GENERALIZED PRIMARY RINGS. IEJA. December 2012;12(12):116-132.
Chicago Gorton, Christine, Henry E. Heatherly, and Ralph P. Tucci. “GENERALIZED PRIMARY RINGS”. International Electronic Journal of Algebra 12, no. 12 (December 2012): 116-32.
EndNote Gorton C, Heatherly HE, Tucci RP (December 1, 2012) GENERALIZED PRIMARY RINGS. International Electronic Journal of Algebra 12 12 116–132.
IEEE C. Gorton, H. E. Heatherly, and R. P. Tucci, “GENERALIZED PRIMARY RINGS”, IEJA, vol. 12, no. 12, pp. 116–132, 2012.
ISNAD Gorton, Christine et al. “GENERALIZED PRIMARY RINGS”. International Electronic Journal of Algebra 12/12 (December 2012), 116-132.
JAMA Gorton C, Heatherly HE, Tucci RP. GENERALIZED PRIMARY RINGS. IEJA. 2012;12:116–132.
MLA Gorton, Christine et al. “GENERALIZED PRIMARY RINGS”. International Electronic Journal of Algebra, vol. 12, no. 12, 2012, pp. 116-32.
Vancouver Gorton C, Heatherly HE, Tucci RP. GENERALIZED PRIMARY RINGS. IEJA. 2012;12(12):116-32.