BibTex RIS Cite

ON NIL-SEMICOMMUTATIVE RINGS

Year 2012, Volume: 11 Issue: 11, 20 - 37, 01.06.2012

Abstract

Semicommutative and Armendariz rings are a generalization of
reduced rings, and therefore, nilpotent elements play an important role in
this class of rings. There are many examples of rings with nilpotent elements
which are semicommutative or Armendariz. In fact, in [1], Anderson and
Camillo prove that if R is a ring and n ≥ 2, then R[x]/(xn) is Armendariz
if and only if R is reduced. In order to give a noncommutative generalization
of the results of Anderson and Camillo, we introduce the notion of nilsemicommutative
rings which is a generalization of semicommutative rings. If
R is a nil-semicommutative ring, then we prove that niℓ(R[x]) = niℓ(R)[x].
It is also shown that nil-semicommutative rings are 2-primal, and when R is
a nil-semicommutative ring, then the polynomial ring R[x] over R and the
rings R[x]/(xn) are weak Armendariz, for each positive integer n, generalizing
related results in [12].

References

  • D.D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra, 26 (1998), 2265-2275.
  • R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra, 319 (2008), 3140.
  • M. Baser, A. Harmanci, and T.K. Kwak, Generalized semicommutative rings and their extensions, Bull. Korean Math. Soc., 45 (2008), 285-297.
  • H.E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc., 2 (1970), 363-368.
  • P. Cohn, Reversible rings, Bull. London Math. Soc., 31 (1999), 641-648.
  • J.M. Habeb, A note on zero commutative and duo rings, Math. J. Okayama Univ., 32 (1990), 73-76.
  • E. Hashemi and A. Moussavi, Polynomial extensions of quasi-Baer rings, Acta Math. Hungar., 151 (2000), 215-226.
  • Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra, 168 (2002), 45-52.
  • C. Huh, N.K. Kim and Y. Lee, An Anderson’s theorem on noncommutative rings, Bull. Korean Math. Soc., 45 (2008), 797-800.
  • C. Huh and Y. Lee and A. Smoktunowicz, Armendariz rings and semicommu- tative rings, Comm. Algebra, 30 (2002), 751-761.
  • N.K. Kim and Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra, (2003), 207-223.
  • Z. Liu and R.Y. Zhao, On weak Armendariz rings, Comm. Algebra, 34 (2006), 2616.
  • L. Ouyang, Extensions of generalized α-rigid rings, Int. Electron. J. Algebra, (2008), 103-116.
  • M.B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci., 73 (1997), 14-17.
  • G. Shin, Prime ideals and sheaf representations of a pseudo symmetric ring, Trans. Amer. Math. Soc., 184 (1973), 43-60.
  • A. Smoktunowicz, Polynomial rings over nil rings need not be nil, J. Algebra, (2000), 427-436.
  • R. Mohammadi, A. Moussavi, M. Zahiri Department of Pure Mathematics Faculty of Mathematical Sciences Tarbiat Modares University Tehran, Iran, P.O. Box 14115-134. e-mails: mohamadi.rasul@yahoo.com (R. Mohammadi) moussavi.a@modares.ac.ir, moussavi.a@gmail.com (A. Moussavi) tmu.Zahiri@yahoo.com (M. Zahiri)
Year 2012, Volume: 11 Issue: 11, 20 - 37, 01.06.2012

Abstract

References

  • D.D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra, 26 (1998), 2265-2275.
  • R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra, 319 (2008), 3140.
  • M. Baser, A. Harmanci, and T.K. Kwak, Generalized semicommutative rings and their extensions, Bull. Korean Math. Soc., 45 (2008), 285-297.
  • H.E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc., 2 (1970), 363-368.
  • P. Cohn, Reversible rings, Bull. London Math. Soc., 31 (1999), 641-648.
  • J.M. Habeb, A note on zero commutative and duo rings, Math. J. Okayama Univ., 32 (1990), 73-76.
  • E. Hashemi and A. Moussavi, Polynomial extensions of quasi-Baer rings, Acta Math. Hungar., 151 (2000), 215-226.
  • Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra, 168 (2002), 45-52.
  • C. Huh, N.K. Kim and Y. Lee, An Anderson’s theorem on noncommutative rings, Bull. Korean Math. Soc., 45 (2008), 797-800.
  • C. Huh and Y. Lee and A. Smoktunowicz, Armendariz rings and semicommu- tative rings, Comm. Algebra, 30 (2002), 751-761.
  • N.K. Kim and Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra, (2003), 207-223.
  • Z. Liu and R.Y. Zhao, On weak Armendariz rings, Comm. Algebra, 34 (2006), 2616.
  • L. Ouyang, Extensions of generalized α-rigid rings, Int. Electron. J. Algebra, (2008), 103-116.
  • M.B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci., 73 (1997), 14-17.
  • G. Shin, Prime ideals and sheaf representations of a pseudo symmetric ring, Trans. Amer. Math. Soc., 184 (1973), 43-60.
  • A. Smoktunowicz, Polynomial rings over nil rings need not be nil, J. Algebra, (2000), 427-436.
  • R. Mohammadi, A. Moussavi, M. Zahiri Department of Pure Mathematics Faculty of Mathematical Sciences Tarbiat Modares University Tehran, Iran, P.O. Box 14115-134. e-mails: mohamadi.rasul@yahoo.com (R. Mohammadi) moussavi.a@modares.ac.ir, moussavi.a@gmail.com (A. Moussavi) tmu.Zahiri@yahoo.com (M. Zahiri)
There are 17 citations in total.

Details

Other ID JA68JT55FE
Journal Section Articles
Authors

R. Mohammadi This is me

A. Moussavi This is me

M. Zahiri This is me

Publication Date June 1, 2012
Published in Issue Year 2012 Volume: 11 Issue: 11

Cite

APA Mohammadi, R., Moussavi, A., & Zahiri, M. (2012). ON NIL-SEMICOMMUTATIVE RINGS. International Electronic Journal of Algebra, 11(11), 20-37.
AMA Mohammadi R, Moussavi A, Zahiri M. ON NIL-SEMICOMMUTATIVE RINGS. IEJA. June 2012;11(11):20-37.
Chicago Mohammadi, R., A. Moussavi, and M. Zahiri. “ON NIL-SEMICOMMUTATIVE RINGS”. International Electronic Journal of Algebra 11, no. 11 (June 2012): 20-37.
EndNote Mohammadi R, Moussavi A, Zahiri M (June 1, 2012) ON NIL-SEMICOMMUTATIVE RINGS. International Electronic Journal of Algebra 11 11 20–37.
IEEE R. Mohammadi, A. Moussavi, and M. Zahiri, “ON NIL-SEMICOMMUTATIVE RINGS”, IEJA, vol. 11, no. 11, pp. 20–37, 2012.
ISNAD Mohammadi, R. et al. “ON NIL-SEMICOMMUTATIVE RINGS”. International Electronic Journal of Algebra 11/11 (June 2012), 20-37.
JAMA Mohammadi R, Moussavi A, Zahiri M. ON NIL-SEMICOMMUTATIVE RINGS. IEJA. 2012;11:20–37.
MLA Mohammadi, R. et al. “ON NIL-SEMICOMMUTATIVE RINGS”. International Electronic Journal of Algebra, vol. 11, no. 11, 2012, pp. 20-37.
Vancouver Mohammadi R, Moussavi A, Zahiri M. ON NIL-SEMICOMMUTATIVE RINGS. IEJA. 2012;11(11):20-37.